Pollution management and resource utilization are the development bottlenecks of pollution emission of livestock and poultry breeding industry, while traditional wastewater treatment process can no longer satisfy the requirements for resource and energy recycling. AMBR can achieve low-carbon, low-power and resources recycling. However, the key issue related to the efficient and stable operation of AMBR called dynamic mechanism of algae-bacteria flocculation and membrane fouling, has not been studied yet. This project plan to utilize AMBR for livestock wastewater treatment, aiming at benefiting from the advantages of algae-bacteria symbiosis in nutrients removal (such as organic carbon, nitrogen and phosphorus) and the availability of the algae-bacteria flocculation that could be further used for biomass utilization, which obtains both advanced treatment and resource utilization of wastewater. The establishment of optimized AMBR could be achieved through strains screening of algae and bacteria, optimization of cultivation conditions and operational parameters. High water recovery of the whole system becomes available through the concentrate recycling of latter NF to AMBR. This project focuses on influence of organic and inorganic components variation on algae-bacteria flocculation and membrane fouling under high water recovery, trying to explain the dynamic mechanism of algae-bacteria flocculation growth and membrane fouling in AMBR under high water recovery through sorts of characterization and analytical methods. The relationship among pollutants removal, algae-bacteria flocculation regulation and membrane fouling control will also be investigated to establish the dynamic regulatory mechanism of AMBR under high water recovery. This project will provide scientific basis and technical support for AMBR operation optimization and membrane fouling control.
畜禽养殖业的污染治理与资源化利用已成为其发展瓶颈,而传统污水处理工艺不能满足资源与能量循环的发展需要。AMBR可实现低碳低耗和资源循环,但对AMBR高效稳定运行十分关键的藻菌絮体与膜污染动态调控机制仍有待研究。本项目拟采用AMBR处理畜禽废水,利用藻菌共生体可高效去除碳氮磷和生物质利用的特点,实现污水净化和有价资源回用。通过藻菌筛选、培养条件和运行参数优化,建立性能最佳的AMBR系统。通过将后段NF浓水回流至AMBR实现整个系统的高水回收率,重点考察高水回收率下AMBR中有机组分和无机组分变化对藻菌絮体和膜污染的影响,结合多种表征手段和数据分析方法,阐述高水回收率下AMBR中藻菌絮体生长和膜污染控制的动态机制,探索AMBR中污染物去除效果、藻菌絮体调控和膜污染控制三者间的相互作用关系,建立高水回收率下AMBR的动态调控机制。本项目旨在为AMBR的运行优化和膜污染控制提供科学依据和技术支持。
畜禽养殖业的污染治理与资源化利用已成为其发展瓶颈,而传统污水处理工艺不能满足资源与能量循环的发展需要。畜禽养殖废水既是农业面源污染的主要来源,也是农业利用的重要资源,畜禽养殖废水中含有大量可供微生物利用的碳源、氮磷及其他微量元素,采用藻菌共生系统处理很好的契合了新时代低碳低耗可持续的污水处理理念。微藻通过光合作用同化吸收污水中的营养物质,同时释放出O2供给异养菌的好氧代谢活动,并供菌类生长附着;异养菌通过好氧代谢降解有机污染物,消除O2对微藻的生长抑制,其降解产物中的CO2、无机氮和磷酸盐等又可供给微藻生长;而膜技术的加入,可以实现AMBR系统的HRT与SRT的分离,提高AMBR处理效率,保证了稳定的处理效果。AMBR可实现低碳低耗和资源循环,但对AMBR高效稳定运行十分关键的藻菌絮体与膜污染动态调控机制仍有待研究。本项目主要从适合于畜禽废水的藻菌共生体系建立、AMBR系统的建立和运行条件优化、藻菌絮体生长与膜污染状况分析和藻菌絮体调控与膜污染形成机制研究四个方面展开,主要结论如下:1)藻菌共生体系对碳氮磷的去除效果显著好于单一微生物体系,同时得到最多的微生物产量,可用于后续生物质利用;2)通过实验优化得到最佳的工艺参数组合,可以实现最佳的污染物去除效果和微生物产量;3)藻菌共生体系下微生物分泌的EPS物质量较单一体系显著减少,尤其是色氨酸类蛋白质,有利于膜污染状况的减轻;4)藻菌共生体系所导致的膜污染以标准堵塞和滤饼层为主,藻菌共生絮体的平均粒径较活性污泥更低,集中在0-10µm区间,更易于形成紧密的滤饼层,进而加剧膜污染;在EPS组分中SMP是对膜污染贡献最大的成分,而各组分均以蛋白质和多糖类物质为主,而膜面污染物以疏水性蛋白质类物质为主。上述结论为探索AMBR中污染物去除效果、藻菌絮体调控和膜污染控制三者间的相互作用关系提供了充分的研究结果和依据,并进一步建立三者的动态调控机制,为AMBR的运行优化和膜污染控制提供科学依据和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
湖北某地新生儿神经管畸形的病例对照研究
新型膜-生物反应器废水处理技术基础研究
畜禽沼液藻菌混合系统氮磷转化与微藻富集的调控机制研究
混合生长式膜生物反应器在废水处理过程中的流体力学特性和传氧效率研究
废水处理涡旋波膜生物反应器的流体动力学效应