In recent years, the research of multifunctional nanomaterials has gradually become the focus of the materials scientists and chemists around the world. Among the nanomaterials, hollow mesoporous silica nanoparticle (HMSN) with unique advantages, such as low density, controllable morphology, adjustable pore size and large specific surface area, easy to modify and low toxicity, is tremendously popular. As we known, the morphology and crystal size of nanomaterials have a great influence on their performances. However, the current studies focus on the preparation of the spherical mesoporous silica nanoparticle, as a result of the low surface free energy, those of the non-spherical HMSN is rarely reported. In view of this, we choose the non-spherical HMSN as the research object in our project. The non-spherical HMSN is prepared by using the ferric oxide with various morphologies as the hard template, combined with a layer-by-layer self-assembly route. On one hand, by introducing the precious metals gold nanoparticles into the non-spherical HMSN, the high performance catalysts in the liquid phase reaction will be obtained. On the other hand, the biological compatibility of the nanomaterial will also be greatly improved by polyethylene glycol(PEG)modification. After grafting folic acid (FA), such a nonspherical HMSN is able to anchor the given cancer cell. As a result, the morphology-controlled preparation and multifunction of the nanomaterial will be successfully carried out. In addition, the results will help us to understand the relationships among the structure, properties of the materials and their performances. Finally, a multifunctional system of mesoporous materials will be built with highly efficiency, stability, and excellent biological compatibility. More importantly, the project will also provide the strong data support and the important theoretical basis for the pplications of non-spherical multifunctional HMSN in the fields of biomedicine and catalysis.
近年来,开发多功能的纳米材料已成为材料学家和化学家的研究热点。其中,中空介孔氧化硅(HMSN)以其独特的优势,如低密度、可控的形貌、可调的孔径和大的比表面积,易修饰及生物低毒性等优点,备受研究学者们的亲睐。纳米材料的形貌与尺寸对其性能有很大的影响,但受限于表面自由能效应,目前的研究多集中在球形MSN的制备上,对非球形HMSN的研究却鲜有报道。鉴于此,本项目以非球形HMSN为研究对象,采用多形貌的三氧化二铁为硬模板,利用层层自组装技术,通过贵金属纳米颗粒的引入,实现材料在液相反应中高效催化的目的,另一方面通过聚乙二醇的修饰和叶酸的锚定,提高材料生物兼容性的同时,赋予其一定的靶向性,有效实现非球形HMSN的择形可控制备和多功能化,并揭示材料结构、性质与其性能之间的关系,最终构建一种高效、稳定、生物兼容性优异的多功能介孔材料体系,为其在生物医学及催化领域的应用提供有力的理论支持和和重要依据。
中空介孔氧化硅(HMSNs)纳米材料凭借其低的密度、可控的形貌、可调的孔径和大的比表面积,易修饰及生物低毒性等独特优势,备受研究学者们的亲睐。纳米材料的形貌与尺寸对其性能有很大的影响,但受限于表面自由能效应,目前的研究多集中在球形MSNs的制备上,对非球形HMSNs的研究却鲜有报道。鉴于此,本项目以非球形HMSNs为研究对象,采用多形貌的三氧化二铁为硬模板,十六烷基三甲基溴化铵为结构导向剂,制备了四种不同形貌和结构的非球形的HMSNs,并采用聚乙二醇(PEG)和叶酸(FA)对其修饰,赋予了其优异的生物相容性和良好的选择靶向性。所得HMSNs和HMSNs-PEG-FA均对抗癌药物阿霉素(DOX)显示出一定的pH响应可控释放行为。研究表明,HMSNs-PEG-FA对HeLa细胞具有选择靶向性(过表达叶酸受体)。此外,通过层层组装的技术路线,构筑了具有多重组分的Fe2O3@SiO2-Au@mSiO2复合纳米结构,该材料对4-硝基苯的催化还原反应显示了较好的催化性能和循环稳定性。最终有效实现了非球形HMSNs的择形可控制备和多功能化,并揭示了材料结构、性质与其性能之间的关系,从而构建了一种高效、稳定和生物兼容性优异的多功能介孔材料体系,为其在生物医学及催化领域的应用提供了有力的理论支持和和重要依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
低轨卫星通信信道分配策略
基于分形维数和支持向量机的串联电弧故障诊断方法
三级硅基填料的构筑及其对牙科复合树脂性能的影响
Wnt 信号通路在非小细胞肺癌中的研究进展
PHTS有序介孔材料的可控制备和在小分子反应中实现产物择形催化过程的机制研究
微硅粉假晶转变制备球形介孔氧化硅及其高效吸附Pb2+的研究
化学镀法合成金属包覆的介孔碳及其在择形催化中的应用
基于介孔二氧化硅的多功能蛋黄-蛋壳结构纳米胶囊的通用制备方法及其在肝癌诊治中的应用研究