The patient with left ventricular heart failure often accompanied by periodic breathing during exercise, sleeping, even resting, which significantly correlates with the severity and prognosis. The explanation for periodic breathing is confused by a diversity of hypothesizes, but its mechanism has still not been clarified. The pulmonary - cardio integrated regulation theory proposed that the cyclic up-down signal of O2 and CO2 in alveolar, which caused by ventilation, arrived at the peripheral (fast) and central (slow) chemoreceptor on the different time, coupling regulated inhalation-exhalation switch and relatively dynamic constant normal breathing. This arterial blood gases cyclic up-down signal is a key switch factor of inspiro-expiro period. Heart is the only power to move it from lung to artery, in where chemical receptor transfer it to never system. Left ventricle mixes the left volume of blood from the last beat with the now coming blood from pulmonary vein and pumps the mixed blood into artery, and resulting that the amplitude of arterial blood gases cyclic up-down signal is lower than that at pulmonary wein. We called it as "mixed chamber effect". In heart failure patients,this arterial blood gases cyclic up-down signal is lower (weaker) than this in normals. Heart and circulation played a key role in respiratory regulation and control; signal transporting time in circulating blood expended the longest time for the respiratory regulation loop. We hypothesized that attenuation this arterial blood gases cyclic up-down signal ( lower amplitude ) by decreased left ventricular function accounted for one mechanism of periodic breathing. Under a general anesthetic and mechanical ventilation, we continuous monitoring blood O2 and CO2 [H+] signal at mixed vein (pulmonary artery), before (pulmonary vein) and after (aorta) left ventricular, moreover, compared these of heart failure model with normal control. Considering the deficiency of the heart failure model, we added two studies to investigate changes of the arterial blood gases cyclic up-down signal at different place were impacted with: 1. changes of the left ventricular functional parameters (heart rate, stoke volume and ejecion fraction) by adjust manual left ventricular analog device and 2. prolong lung-carotid cycled times using by-pass tube. Consequently, we illustrate one explanation of periodic breathing by mechanism of arterial blood gases cyclic up-down signal, as well as the respiratory integrated control theory. The concept of this study is original, and the method is feasible.
左心衰常现陈施呼吸,与病情和预后相关,但机制不明。我们临床发现正常动脉血气存在周期性升降变化,称为动脉血气波浪式信号;而左心衰时该信号幅度明显降低。肺通换气是该信号的始原;心脏是该信号前行的动力;心室按一定比例混合搏血降低左室后该信号幅度称混合室效应。我们假设心衰时左室混合室效应异常影响呼吸稳定是陈施呼吸主要机制之一。全麻机械通气下连续同时监测静脉、左室前、后血气,比较心衰和正常动物各处该信号和循环时间的异同;并记录直接改变左室心搏量、心率、射血分数等指标和延长循环时间各处该种信号的变化,分析左心对该信号的影响。申请人耗时30余年首创"心肺等一体化调控:整体整合生理学医学"科学假说, 通过左室混合室效应(心功能影响该信号)全新视角客观定量分析心脏对呼吸的影响,是理论核心之一,属源头创新,验证和发掘该信号的任何信息都具有突破性价值,揭示陈施呼吸发生机制,探索治疗新方法。临床应用和科学价值高。
左心衰的患者出现陈施呼吸的表现病情和预后相关,但机制不明。我们进行动物(正常整体大动物和心衰模型)不同部位的呼吸调控的波浪信号幅度的实验和在正常人与心衰患者动静脉置管,连续逐搏取血进行血气分析,动脉血O2、CO2、(H+)(血氧为核心)存在与呼吸相关的周期性升降变化;而静脉血中无此变化。我们称为动脉血气波浪式信号,是呼吸切换调控核心信号,在左心衰时该信号幅度明显降低。本课题研究直接改变左心室功能指标和不同呼吸指标下对动脉血气波浪式信号的影响,实验验证动脉血波浪式信号的产生是由于人出生后一吸一呼造成肺泡气体分压波浪式升降所致,再经过肺毛细血管平衡流入肺静脉,左心房、左心室、主动脉弓和颈动脉体,改变外周化学感受器的电活动经上传神经、中枢整合、膈神经和肋神经支配膈肌和肋间肌实现呼吸切换;左心功能指标的改变通过通过左心室混合室效应也影响波浪幅度对呼吸调控发生作用,直接影响呼吸频率和强度;心衰时通过左心室混合室效应和肺-外周化学感受器与中枢化学感受器反应的时相错位效应,是陈施呼吸产生的核心机制。通过本研究完善了呼吸调控与循环调控各自的环路;实验证实传统呼吸调控环路里包含原来被忽略的循环部分:肺静脉、左心房、左心室和动脉的部分,共同组成了呼吸循环调控的完整闭环,形成呼吸循环代谢一体化调控的主环路,由此完善了整体整合生理学基本架构。心脏,特别是左心,既是呼吸调控环路的核心组成部分,也是循环调控的核心靶器官,所以心脏功能在生命维持中处于中心地位。用整体整合生理学医学新理论指导探索慢性心衰患者个体化运动康复、慢病有效诊疗和健康有效管理的初步临床应用,取得良好效果。本课题共计已发表核心期刊39篇、待发表20余篇,同时申请了5项专利,培养数名研究生、访问学者和进修医师。本课题资助下中国人独创的整体整合新理论体系,属于颠覆式理论创新,科学价值极高;用于指导慢病防治康养一体化管理,对人民卫生与健康事业社会效益巨大。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
特斯拉涡轮机运行性能研究综述
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
无创正压通气对慢性心力衰竭合并陈施呼吸的治疗机制研究
四氢生物蝶呤对高血压左室舒张功能的影响及机制
甲基强的松龙、阿达木单抗及尼可地尔对冠状动脉微栓塞后左室重构的影响及其机制
Lin28a/Mst1信号通路逆转心肌梗死后左室重构的机制研究