There are a lot of known results on permutation polynomials in one variable, but the known results on permutation.polynomials in several variables are much less. Usually, problems on permutation polynomials in several variables have some new differiculty, which disappears in the case of one variable. It is shown by some old results. From algebraic geometric point of view, a permutation polynomial in several variables corresponds to a.morphism of relative codimension larger than 0. This project is devoted to the research to two class of problems on permutation polynomials in several variables (over finite fields or residue.rings).
本项目研究多元置换多项式的几个基本问题。主要目标是解决Niederreiter公开问题的二元情形并部分推广到多元情形;得到模p^n的置换多项式对n的递归判别法,推广Nobauer关于S嗬嗷飞弦辉没欢嘞钍降幕径ɡ怼V没欢嘞钍接攵喔鍪Х种в辛担鞘Чぞ叩氖匝榈兀⑶以诿苈搿⒈嗦氲攘煊蛴性嚼丛蕉嗟挠τ谩enstra的工作以后,多元多项式将倍受重视。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于铁路客流分配的旅客列车开行方案调整方法
带有滑动摩擦摆支座的500 kV变压器地震响应
黏弹性正交各向异性空心圆柱中纵向导波的传播
带球冠形脱空缺陷的钢管混凝土构件拉弯试验和承载力计算方法研究
IV型限制酶ScoMcrA中SRA结构域介导的二聚体化对硫结合结构域功能的影响机制
有限域上的方程和置换多项式
关于ore多项式的算法和实现
密码学中置换多项式的构造问题研究
关于风险过程的若干问题