On-line monitoring ferromagnetic particles in the oil is a common key core technology on large mechanical equipment fault diagnosis, inductive online monitoring sensor is urgently needed to be developed at home. To break through key technologies of the tiny particles monitoring mechanism and the identification of mixed overlapping signals produced by many particles passing through the sensor, the basic theory problems are studied: 1) Inductive sensor simulation analysis mathematical model is set up, incentive coil frequency characteristic is introduced, the effects of parameters on the induced electromotive force are revealed; 2) Induced electromotive force characteristics of tiny ferromagnetic particles passing through sensor, incentive characteristics adaptively matching incentive coil, incentive characteristics with multiple parameters adaptively matching methods aiming to obtain high induced electromotive force output are studied; 3) The weak signal feature when wear particles pass through the sensor in an unnormal state is studied, the jamming signal interference characteristics are analyzed by means of simulation and experiment, signals are extracted by lock-in amplifier technology and the weak signal extraction method is obtained; 4) The weak signal feature produced by particles passing through the sensor in a chaotic state is studied, the mixed weak signal characteristics are analyzed by means of simulation and experiment, signal database is established, the neural network is used to identify the particles, the research provides key technical support for the system of on-line monitoring tiny particles in the oil.
油液中铁磁性颗粒在线监测是大型机械设备故障诊断的一项共性关键核心技术,电感式在线监测传感器是目前国内亟待研制的监测器。为突破微小颗粒监测机理与多颗粒通过时产生的混迭信号辨识关键技术,本项目拟对其基础理论问题开展研究:1)建立电感式传感器仿真分析数学模型,引入激励线圈频率特性,揭示多参数对感应电动势大小的影响规律;2)研究微小铁磁性颗粒通过传感器的感应电动势特征,自适应匹配激励线圈的激励特性,获得高的感应电动势输出的激励特性与多参数自适应匹配方法;3)研究非规则状态下磨损颗粒通过传感器时产生的微弱信号特征,利用仿真、实验手段分析外界干扰产生的干扰信号特征,采用锁相放大技术进行信号提取,获得微弱信号的提取方法;4)研究处于混沌状态的颗粒通过传感器时所产生的微弱信号特征,利用仿真、实验分析微弱信号混迭特征,建立信号数据库,采用神经网络进行颗粒识别,为油液中微小颗粒在线监测系统提供关键技术支撑。
油液中铁磁性颗粒在线监测是大型机械设备故障诊断的一项共性关键核心技术,电感式在线监测传感器是目前国内亟待研制的监测器。为突破微小颗粒监测机理与多颗粒通过时产生的混迭信号辨识关键技术,本项目拟对其基础理论问题开展研究:1)建立电感式传感器仿真分析数学模型,引入激励线圈频率特性,揭示多参数对感应电动势大小的影响规律;2)研究微小铁磁性颗粒通过传感器的感应电动势特征,自适应匹配激励线圈的激励特性,获得高的感应电动势输出的激励特性与多参数自适应匹配方法;3)研究非规则状态下磨损颗粒通过传感器时产生的微弱信号特征,利用仿真、实验手段分析外界干扰产生的干扰信号特征,采用锁相放大技术进行信号提取,获得微弱信号的提取方法;4)研究处于混沌状态的颗粒通过传感器时所产生的微弱信号特征,利用仿真、实验分析微弱信号混迭特征,建立信号数据库,采用神经网络进行颗粒识别,为油液中微小颗粒在线监测系统提供关键技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
内点最大化与冗余点控制的小型无人机遥感图像配准
基于分形维数和支持向量机的串联电弧故障诊断方法
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
基于高辨识度磁性标记的液压泵磨损主动在线监测理论与关键技术研究
旋转机械并发多故障耦合机理及在线辨识与分离研究
刀具磨损与破损在线监测理论与技术的研究
旋转机械耦合故障微弱信号特征提取与诊断方法研究