High-concentration organic wastewater has become a great environmental problem due to high COD,high toxicity and refractory degradation. The key to solve the above problem is to develop highly efficient catalytic material. In this project, novel catalytic fibers materials were prepared by combining activated carbon fibers containing persistent free radicals (rich free electrons) with the Fenton catalyst, and the performance of reactive oxygen species (ROS) based on the Fenton catalysts driven by activated carbon fibers containing persistent free radicals were further investigated. Compared with the single Fenton catalyst, the introduction of activated carbon fibers enhanced the quantity of ROS to nearly 10 times, and improved the degradation rate of dye pollutants to dozens of times and even thousands of times. A series of basic theoretical problems are investigated, including ROS enhancement mechanism by activated carbon fibers containing persistent free radicals, the coupling mechanism between activated carbon fibers and the Fenton catalyst, the catalytic reaction kinetics and so on, revealing the relationship between the structure and performance and elucidating enhanced mechanism. The project is a across project from carbon materials, environment and catalysis. The systematic study of ROS produced by activated carbon fibers containing persistent free radicals not only provides a new idea for high-concentration organic wastewater treatment, but also opens up a new direction for the application of persistent free radicals in the field of environmental catalysis, and has changed the understanding of the environmental hazards for persistent free radicals.
高浓度有机废水因COD高、毒性大、难降解等特点成为重大的环境问题,解决这一问题的关键是开发高效的催化材料。项目利用活性碳纤维含有持久性自由基(富含自由电子)的结构特性,将活性碳纤维与芬顿催化剂结合制备新型芬顿催化纤维材料,研究活性碳纤维持久性自由基驱动芬顿催化剂产生活性氧种(ROS)的性能,与单独芬顿催化剂相比,活性碳纤维的引入实现了ROS近10倍增强,降解染料等有机污染物的反应速率常数提高了几十倍甚至上千倍。项目重点研究活性碳纤维增强产生ROS的机制、活性碳纤维与芬顿催化剂的耦合机理、催化反应动力学等一系列基础理论问题,揭示催化剂结构与性能的关系。本项目是碳材料、环境和催化等多学科交叉的项目,通过对活性碳纤维持久性自由基产生ROS的系统研究,不仅为处理高浓度有机废水提供了新思路、新方法,而且开辟了持久性自由基在环境催化领域的应用新方向,改变了人们对持久性自由基仅有环境危害的认识。
芬顿技术因具有氧化性强、操作简单等特点被认为是处理高浓度有机废水最有前途的方法之一。针对传统芬顿技术存在催化效率低的问题,项目利用活性碳纤维、碳纤维含有持久性自由基的结构特点,成功构筑了草酸铁负载活性碳纤维、碳化铁负载碳纤维、碘掺杂碳纤维材料、磷掺杂碳纤维等系列高催化活性芬顿催化纤维材料。以染料、酚类化合物为对象,以PMS、H2O2为等氧化剂,测试了芬顿催化纤维材料的催化性能和催化动力学,阐明了催化纤维结构与性能的关系,结果显示芬顿催化纤维材料的催化降解性能明显高于单独小分子催化剂,揭示了芬顿催化材料高效降解染料、酚类化合物等有机污染物的催化增强机制,结合EPR技术、自由基捕获实验,研究了催化体系生成ROS的性能,探明了催化体系中ROS的种类及贡献。采用液质联用仪(LC-MS)、气质联用仪(GC-MS)等探明了有机污染物产物降解历程。芬顿催化纤维对实际高浓度、低浓度废水具有良好的处理效果,在实际废水处理方面应用前景广阔。项目为制备高活性稳定的芬顿催化材料打下了良好的理论基础,为以后芬顿催化纤维处理实际废水提供了新思路和新方法。围绕上述研究内容,在《Chemical Engineering Journal》、《Catalysis Science & Technology》等期刊上发表了9篇学术论文,其中SCI一区1篇,二区7篇;获授权国家发明专利1项,申请国家发明专利2项;培养硕士研究生5名,本科生12人。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
土壤中持久性自由基诱导产生ROS氧化As(III)的微观机制研究
表面活性剂增效铁柱撑膨润土光助-芬顿降解染料的机制
构筑"限域型"多孔碳/非均相芬顿催化剂及其可见光"增效"降解水中新兴有机污染物的机制研究
生物炭持久性自由基诱导产生ROS修复洞庭湖表层底泥抗生素污染的行为与机理研究