Solar energy resources are extremely rich in marine environment. The clean and environmentally friendly solar energy can be used to provide the photoelectrochemical cathodic protection for the marine metallic structures through the semiconductor photoelectric conversion technology, and this is attracting more and more attentions from researchers. This project will focused on the further investigations on the photoelectrochemical cathodic protection issues of the metallic materials with more negative self-corrosion potential exposed in real marine environment. The graphene hybrid/quantum dots sensitized photoelectrodes with ordered structures will be built and optimized, and the promotion mechanism of the photoelectrochemical cathodic protection performance of the prepared photoelectrodes will be explored and elucidated. Meanwhile, this project will also reveal the role of the hybridization effect of graphene, the microstructure of quantum dots and the construction of the doped hierarchical structures on the photoelectrochemical cathodic protection performance under visible light illumination as well as the continuous cathodic protection performance provided by the photoelectrode after the light is switched off. By using the test methods from Materials Science, Corrosion Science and Photoelectrochemistry, the role of the multi-component synergistic effect on the adjustment of the surface/interface work function of the photoelectrode, and reducing the transfer energy barrier of the photogenerated electrons, as well as improving the depolarization ability of the photogenerated holes on the surface of photoelectrode will be studied in this project. Furthermore, the structure-activity relationship between the microstructure of the photoelectrode and the photoelectrochemical cathodic protection efficiency will be established. This project will provide a scientific foundation for understanding the micromechanism of the photoinduced cathodic protection of semiconductor coatings, and accelerate the application process of the photoelectric materials in the area of cathodic protection.
海洋环境中太阳能资源极为丰富,利用清洁环保的太阳能,通过半导体涂层的光电转换技术,为涉海金属构筑物提供光电化学阴极保护的防腐新方法引起了越来越多科学家的关注。本项目将针对真实海洋环境中对自腐蚀电位较负金属的光电化学阴极保护难题展开进一步研究。优化构筑石墨烯杂化/量子点敏化的有序结构光电极,探索提升光电材料可见光光电化学阴极保护效能的有效机制。从微观层次揭示石墨烯杂化效应、量子点的微观结构、及掺杂多级结构的构建对光电极材料可见光光电化学阴极保护性能及延时阴极保护性能影响的规律。借助材料科学、腐蚀科学及光电化学的研究方法,研究多组分协同作用对调整光电极表/界面功函数、降低光生电子转移能垒、及改进表面光生空穴去极化能力的影响机制。建立光电极材料的微观结构与光电化学阴极保护效能间的构效关系。为进一步认识半导体涂层的光致阴极保护作用的微观机制提供科学依据,加速光电材料在金属阴极保护中的应用进程。
当今,海洋科技不断发展与突破,涉海金属工程材料腐蚀异常严重的问题也迫使研究人员重点攻关。鉴于当前太阳能电池、光电化学及光催化在多领域的迅猛发展,太阳能的有效利用有望缓解日趋枯竭的化石能源的困境。利用海洋中丰富的太阳辐照这一清洁能源,通过光电转换功能材料为基底金属材料提供光生电子进行阴极保护的新技术,在腐蚀防护领域备受关注。当今光电阴极保护材料,在实际海洋环境中对自腐蚀电位较负的金属保护性能欠佳,针对这一难题,如何大幅改善与提升该性能是关键科学问题。现今大部分报道中使用含空穴清除剂的电解液进行研究,但实际海洋环境中基本不含空穴清除剂。因此本项目发展了理论与实验相结合的光阳极系统优化方法,在助力该技术走向实际应用的研究上取得了重要成果:1)成功构建了NaCl溶液环境中(一种模拟海洋环境),具有高效光致阴极保护性能的光阳极,且体系中各组分皆绿色环保,为真实海洋环境下光电阴极保护材料的实际应用提供了最为实用的体系,对推动该技术走向实际应用具有指导意义;2)实现了NaCl溶液中高效共敏化有序结构光致阴极保护光阳极的可控制备,借助多学科交叉的研究方法,揭示了其间多组分量子点结构调控、石墨烯杂化效应、能带电位匹配搭建及调负能带电位对协同提升性能的关键机制;3)发展了一系列新型基层结构,探明了微纳形貌及晶型结构与光阳极光致阴极保护效能间的构效关系;4)阐明了光电极中助剂层等异组分修饰对提升光生电子转移、光生空穴消耗的作用机制;5)基于以上的研究推进及新的认识,最终在光阳极优化构筑上取得了重要进展,ZnInS2/TiO2纳米花丛光阳极具有NaCl溶液中对多种自腐蚀电位较负、更难保护的金属的光电阴极保护优良特性,极大拓展了光电阴极保护材料的实际应用范围。项目执行期间,共发表学术论文18篇及已接收1篇,其中SCI收录期刊论文17篇;获得奖项3项;授权国家发明专利2项、公开国家发明专利3项、已出申请号国家发明专利2件。圆满完成了项目既定目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
钢筋混凝土带翼缘剪力墙破坏机理研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
多元量子点能级有序异质结构敏化改性石墨相氮化碳光催化性能研究
量子点敏化半导体/石墨烯复合纳米材料的光催化特性及机理
设计杂原子掺杂石墨烯量子点用于癌症诊疗一体化研究
石墨烯负载的氧化锡量子点气敏反应特性与影响机制研究