Nanotheranostic systems are currently being widely developed for the early diagnosis and therapy of cancer since these systems can track the treatments in real time and govern the therapeutic process accurately, in favor of adjustments of therapeutic strategies and prognosis guarantee for patients. Nanomaterials with the functions of fluorescence imaging and photodynamic therapy (PDT) are frequently used for the design of nanotheranostic systems, however, the low performance of the visualization and elimination of the tumors in deep tissues limits their wide applications. This project plans to design a novel nanotheranostic system based on graphene quantum dots (GQDs). The edges of GQDs are designed to be doped by heteroatoms in purpose of shortening the band gap of GQDs, leading to the production of NIR fluorescence and reactive oxygen species (ROS) under NIR laser irradiation. This system facilitates near infrared (NIR) fluorescence imaging and NIR laser-irradiated PDT, feasible for the visualization and elimination of tumors in deep tissue. Doping methods as well as doping heteroatom species, position and ratio will be optimized to enhance the NIR fluorescence intensity and ROS generation efficiency. Thereby, a novel nanotheranostic system with biocompatibility, photostability, fluorescence imaging and PDT could be developed. This project will also provide a novel solution for the design of efficient nanotheranostic systems and be of great significance in the early diagnosis and treatment of cancer.
纳米诊疗一体化系统正在被广泛用于癌症的早期诊断与治疗。这类系统能够对治疗效果进行实时监测,准确掌控治疗进程,有利于实时调整治疗方案,给病人提供预后保证。具有荧光成像和光动力学治疗(PDT)功能的纳米材料常被用于这一系统的合理设计,然而,缺乏对深层组织中肿瘤的成像与清除能力限制了这一系统的广泛应用。本项目拟以石墨烯量子点(GQDs)为平台设计制备纳米诊疗一体化系统,通过在GQDs的边缘掺杂杂原子使得其能隙宽度缩短,导致GQDs产生近红外荧光并且能够在近红外光的照射产生活性氧,从而使得这一系统能够用于近红外荧光成像和近红外照射下的PDT, 利于深层组织中肿瘤的成像和清除。不同的杂原子种类、掺杂方法、位置和比例将被优化以增强近红外荧光强度和活性氧产率,从而获得生物兼容好的、光稳定、集荧光成像和PDT一体的纳米诊疗一体化系统,为新型纳米诊疗一体化系统的设计提供了崭新的思路,对癌症的诊疗有重要意义。
纳米诊疗一体化系统正在被广泛用于癌症的早期诊断与治疗。这类系统能够对治疗效果进行实时监测,准确掌控治疗进程,有利于实时调整治疗方案,给病人提供预后保证。具有荧光成像和光动力学治疗(PDT)功能的纳米材料常被用于这一系统的合理设计,然而,缺乏对深层组织中肿瘤的成像与清除能力限制了这一系统的广泛应用。本项目拟以石墨烯量子点(GQDs)为平台设计制备纳米诊疗一体化系统,通过在GQDs的边缘掺杂杂原子使得其能隙宽度缩短,导致GQDs产生近红外荧光并且能够在近红外光的照射产生活性氧,从而使得这一系统能够用于近红外荧光成像和近红外照射下的PDT, 利于深层组织中肿瘤的成像和清除。不同的杂原子种类、掺杂方法、位置和比例将被优化以增强近红外荧光强度和活性氧产率,从而获得生物兼容好的、光稳定、集荧光成像和PDT一体的纳米诊疗一体化系统,为新型纳米诊疗一体化系统的设计提供了崭新的思路,对癌症的诊疗有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
结直肠癌免疫治疗的多模态影像及分子影像评估
非牛顿流体剪切稀化特性的分子动力学模拟
强震过程滑带超间隙水压力效应研究:大光包滑坡启动机制
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
杂原子掺杂石墨烯量子点的介质阻挡放电合成法及其发光特性研究
石墨烯量子点的掺杂研究
自组装核酸量子点复合纳米材料的癌症诊疗一体化应用研究
掺杂石墨烯量子点的发光机理和超快过程研究