Coupled cavity arrays sytsems are potential candidates to realize quantum simulators. In recent years, this field attracted tremendous attention and exhibited rich quantum many-body phenomena. Recent experimental progress in the coupled cavity arrays has triggered an immense interest in using them as quantum simulators of many-body physics and made them become a very good candidate for a possible quantum-information processing architecture. Despite the plentiful and substantial achievements, unfortunately, most of these studies only focused on the ideal and isolated coupled cavity array cases. However, the quantum optical system is basically coupled to its external environment in the actual experiments. It is therefore needed to clarified whether the link between the ideals of cavity arrays as quantum simulators and the realistically experimental condition is hold and how the dissipation and decoherence of the matter would behave in this system.Then this project will focus on the quantum simulation of the strong correlated system and the photon transport in the driven coupled cavity array attached to its environments. As the coupling between the system and the environment gives rise to great hurdles to fully describe the properties of the system, we first introduce a new kind of quasi-bosons approach to eliminate the coordinates of the bath and redescribe the system via an effective Hamiltonian. The requirements to realize analogs of Jaynes-Cummings-Hubbard model, Tavis-Cummings and Dicke-Bose-Hubbard model are conducted systematically. Then the dynamics of this system based on these models is solved analytically and numerically to investigate the effects of the controlling parameters, dissipation, decoherence, detunings, coupling strength, pump strength and finite temperatures on the strong-correlated effects. The photon transport in the dissipative coupled cavity array will also be investigated. Our research may open up a wealth of possibilities for pronounced understanding the mechanism of the strong-correlated effects in the array of coupled cavity systems considering the dissipation conveniently. Furthermore, it is not limited to certain implementations and can also be generalized to treat dynamical problems and atomic dissipation. We expect that our approach could be beyond the scope of this work and provide a starting point for discussing more complicated situations, such as quantum information and quantum control.
用耦合腔阵列体系量子模拟强关联系统是近年备受关注的热点,但大部分研究都是基于理想的孤立系统,而环境作用下耗散耦合腔阵列体系中强关联系统的量子光学模拟研究工作甚少,物理机制尚待探究。本项目拟开展激光驱动和环境作用下耦合腔阵列中强关联系统的量子光学模拟及其在光子输运中的理论研究。项目拟采用准玻色图像消除环境的自由度并给出重整化的有效哈密顿量,系统地探索在不同参数条件下与Jaynes-Cummings-Hubbard、Tavis-Cumings 和 Dicke-Bose-Hubbard模型的对应,从动力学角度确定强关联效应的发生及其与失谐、耦合强度、驱动光频、原子自发辐射、腔场耗散等参数的关系,并在此基础上研究该体系中的光子输运。本项目的理论研究对于认识环境作用下耦合腔阵列体系量子模拟强关联多体系统的物理机制具有重要意义,并可为量子信息科学、超冷原子体系的量子调控提供理论依据。
量子模拟是量子信息科学的一个前沿研究领域,用耦合腔阵列耦合超冷原子体系量子模拟强关联系统已成为近年备受关注的热点前沿之一。大部分研究都是基于理想情况下的孤立系统,而环境作用下该体系中强关联系统的量子光学模拟研究工作甚少,物理机制尚待探究。项目开展了该体系中强关联系统的量子光学模拟及其光子输运中的理论研究。采用准玻色图像消除环境的自由度并给出重整化的哈密顿量,系统地探索了不同参数条件下体系与 Jaynes-Cummings-、Tavis-Cumings- 和 Dicke-Bose-Hubbard 模型的对应,确定了体系的超流-Mott绝缘相变和光子输运性质与体系控制参数的关系。研究结果表明:.(1)环境引起的耗散导致体系序参量随时间衰减,使得超流态体系局域化,而更大的遂穿率才能让绝缘态的耗散体系产生长程相干;当原子数目增大时,体系趋于经典。.(2)环境引起的耗散和有限温度效应使系统从超流态转变为绝缘态;原子间偶极耦合强度越大,超流态转变为绝缘态的相变临界时间也越大。.(3)双光子过程比单光子过程具有更大的耗散率,系统维持长程相干的时间更短,而重铸相干的遂穿率的临界值更大;调节失谐可以改变腔间的有效排斥势和系统的临界隧穿率,实现系统在超流态和绝缘态之间转变。.(4)可通过调节经典驱动场的关闭来控制光子的传输,三能级原子可以用来做更髙级的量子开关。光子在共振频率附近的不完全反射主要是由原子的耗散引起的,不完全透射主要是由腔场的耗散引起。.(5)原子耗散和腔场耗散都能使反射率峰值降低,但原子耗散影响较大;对于环境作用下的体系,通过调节原子和腔场之间的失谐以及驱动量子化腔场的光子数仍可使单光子接近全反射。. 本项目的理论研究对于认识耗散耦合腔阵列体系量子模拟强关联多体系统的物理机制具有重要意义,并可为量子信息科学、超冷原子体系的量子调控提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
二维FM系统的同时故障检测与控制
扶贫资源输入对贫困地区分配公平的影响
LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响
铁路大跨度简支钢桁梁桥车-桥耦合振动研究
基于超冷Rydberg原子耦合微腔阵列量子模拟多体问题和光子输运的研究
钙钛矿微腔中光子与激子强耦合作用研究
腔阵列中纠缠特性和多体问题及其在量子模拟中的应用
分数交换和分数排斥统计在强关联系统中的应用研究