Photocatalytic water splitting is an efficient way to achieve the large-scale production of H2. To actualize H2 evolution from water splitting, it is necessary to develop a cost-effective catalyst system with high performance and durability under the photocatalytic conditions. Recently, metal-organic frameworks (MOFs) materials exhibit promising photocatalytic activity towards water splitting. However, the major challenges associated with this catalytic system are the unstable framework, low visible-light harvesting, low photogenerated electron/hole separation efficiency and lack of reaction mechanism. Accordingly, this project is to develop novel metal phosphonate hybrid materials for efficient photocatalytic water splitting based on our previous works. By monitoring the formation process, deep insights into the structural characteristics at the molecular or atomic scale can be achieved, thereby improving the framework crystallization and porosity of metal phosphonate. The distribution status of organophosphonic moieties and well-defined porosity are investigated to understand the effect on photocatalytic water splitting. On the basis of in-situ or non-in-situ spectroscopic techniques and theoretical calculation, the right catalytic sites and reaction mechanisms are established, and a further step can realize the structure-performance relationship of the catalysts, as well as the understanding of intrinsic relation betwen catalyst preparation, physicochemical structure and photocatalytic activity. All in all, this project shall go on the optimized design and controllable synthesis of highly efficient metal phosphonate-based hybrid materials towards photocatalytic water splitting, and can provide new perspectives for the development and practical application of this new catalyst system with high activity and strong durability.
优化光催化制氢反应体系、开发新型高效催化剂以及反应机理研究仍是当前的研究热点和难点。本项目针对当前金属有机骨架光解水制氢催化剂研究中存在骨架结构不稳定,太阳光利用效率低,光生电子/空穴分离效率低和反应机理缺乏等科学问题,开展替代型金属膦酸盐基有机骨架催化剂相关研究。在前期有关金属膦酸盐多孔材料的工作基础上,力求在分子或原子水平上对形成机制和结构性能有更深入全面的认识,着力提高这类新型金属膦酸盐基有机骨架催化剂孔壁结晶度和孔径及孔结构。深入研究杂化骨架结构中有机和无机组分的分布状况以及孔道结构等对光催化活性的影响。借助原位和非原位光谱等测试技术和理论计算,研究金属膦酸盐光催化反应机理,阐明材料制备-物化结构-光催化性能间的内在联系与构效关系,旨在实现高效光催化制氢催化剂的优化设计和可控合成,以期为新一代光催化制氢体系的开发和应用提供理论基础和技术支持。
本项目针对当前金属有机骨架光解水制氢催化剂研究中存在骨架结构不稳定、太阳光利用效率低、光生电子/空穴分离效率低和反应机理缺乏等科学问题,开展替代型金属膦酸盐基有机骨架催化剂相关研究。在前期有关金属膦酸盐多孔材料的工作基础上,着力在设计合成及材料合成机制和结构性能有更深入全面的认识,深入研究杂化骨架结构中有机和无机组分的分布状况以及孔道结构等对光催化活性的影响,提高这类新型金属膦酸盐基有机骨架及衍生物催化剂的光解水性能。同时扩展研究这些材料的电催化析氢、析氧、氧还原和氮还原等反应性能和机制。借助原位和非原位光谱等测试技术和理论计算,研究金属膦酸盐光催化和电催化反应机理,阐明材料制备-物化结构-光催化性能间的内在联系与构效关系,并进一步构筑出全解水装置、金属-空气电池、金属-氮气电池等器件。项目执行期间已发表标注论文74篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
水氧化功能金属有机膦酸盐骨架材料的构筑及产氧机制研究
光催化功能导向的金属有机骨架及其复合材料:构筑、性能与机理研究
纳米孔洞金属-有机骨架新型光催化材料的设计、合成及光催化制氢性能
功能金属有机膦酸杂化材料的构筑