There exist urgent requirements for the control technology of bearingless motor in some scopes, such as high-speed drive, sealed transmission, aviation and aerospace realms, etc. But, the unbalance vibration caused by rotor mass eccentricity, is a serious problem to overcome for bearingless motor; At the same time, in high-speed, the flexible bending of shaft will lead to the measurement difficulties of rotor's displacement. Therefore, the unbalance vibration control based on radial displacement estimation, will be the development trend of bearingless motor control in the future. .In the project, aiming at bearingless induction motor, some key scientific questions, such as the dynamic decoupling control strategy of unbalance vibration, and the high-precision decoupling estimation method of radial displacement, will be researched. Says specifically, the work task includes three aspects as following: .Firstly, from mechanism analyses, and with the aid of computer simulation, the control rule of asynchronous revolving suppression force for unbalance vibration will be revealed. Based on some modern control theory, such as inverse system control theory etc., the dynamic decoupling method of unbalance vibration control system will be researched, and the direct control strategy of unbalance radial displacement will researched also. .Secondly, from theory analyses, and with the aid of finite element calculation, newly type of detecting coil that can avoid the alveolar effect will be researched, the variational rule of its self-inductance parameter will be revealed, the effective compensation method for basic frequency disturb will be presented, and the decouping estimation model with high precision of radial displacement will be established. .Finally, the experimental research on displacement estimation and unbalance vibration control will be made. By way of experimental research, relevant model, algorithm and control strategy will be verified and optimized, and effective control of unbalance vibration based on radial displacement estimation will be achieved. .Research fruits will lay solid theory foundations for bearingless motor to walk up to high-speed and practical application.
高速驱动、密封传动和航空航天等领域,对无轴承电机控制技术有着迫切需求,但转子质量偏心将引起不平衡振动,高速转轴的柔性弯曲又导致转子位移测量困难;在位移估计的基础上控制不平衡振动,是未来发展趋势。项目将以无轴承异步电机为对象,对不平衡振动的动态解耦控制策略、径向位移的高精度解耦估计方法等关键科学问题展开研究:①通过机理解析和仿真,揭示异步速旋转不平衡振动抑制力的控制规律;结合逆系统等现代控制理论,研究不平衡振动控制系统的动态解耦方法、不平衡位移的直接控制策略;②通过理论分析和有限元计算,研究可避免齿槽效应的新型探测线圈结构,揭示其自感参数变化规律,给出基频干扰的补偿方法,建立径向位移的高精度解耦估计模型;③通过对不平衡振动控制和位移估计性能的实验研究,验证和优化相关模型、算法与策略,在位移自传感检测的基础上实现不平衡振动的有效控制。研究成果将为无轴承电机走上高速化、实用化道路奠定理论基础。
在现有逆解耦控制的基础上,引入定子电流动态方程,通过理论推导法建立了逆系统模型,提出了考虑定子电流动态的无轴承异步电机转子磁链定向逆动态解耦控制策略,设计了各子系统调节器;可省去负载转矩辨识环节以及原系统中的定子电流闭环,有效简化控制系统结构。在考虑及忽略定子电流动态两种条件下,提出了无轴承异步电机定子磁链定向逆模型、逆动态解耦控制策略,有效避免了转子参数影响。在考虑及忽略定子电流动态两种条件下,提出了无轴承异步电机气隙磁链定向逆模型、逆动态解耦控制策略;通过对转矩系统气隙磁链的直接逆解耦控制,提高了动态磁悬浮解耦控制性能。并在逆系统解耦基础上,研究了基于逆系统的滑模变结构控制、基于神经网络逆的模糊自适应控制策略,有效提高了动态解耦控制性能。基于不平衡振动产生机理分析,研究了不平衡位移的自适应LMS滤波、旋转变换加滤波等提取法;把转子位移分解为稳态随机位移、不平衡位移;根据不平衡位移构建了激振力补偿器,通过力/流变换得到振动补偿力的控制电流;在稳态随机位移逆解耦控制的基础上,提出了基于逆系统解耦的无轴承异步电机不平衡振动直接电流补偿控制方法,在dq同步坐标系上完成不平衡位移的“直接电流补偿控制”。在无轴承异步电机磁悬浮系统状态空间模型分析的基础上,将最小二乘支持向量机(LS-SVM)引入无轴承异步电机的转子位移观测器,提出了基于最小二乘支持向量机的无轴承异步电机径向位移观测方法,给出了观测器构造方法和步骤,建立了基于LS-SVM位移观测器的不平衡振动控制系统,解决了转子位移的非线性观测问题;并研究了基于LS-SVM的解耦控制策略。转矩绕组与悬浮绕组的互感模型是转子径向位移无传感器检测的理论基础;通过机理分析,推导出了“等效两相互感参数”与三相无轴承异步电机原机参数之间的关系模型,提出了三相无轴承异步电机“等效两相互感参数”模型及其实验测量算法;设计多CPU磁悬浮控制器,制作了新结构原理样机。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
粗颗粒土的静止土压力系数非线性分析与计算方法
内点最大化与冗余点控制的小型无人机遥感图像配准
中国参与全球价值链的环境效应分析
卫生系统韧性研究概况及其展望
无轴承电机无传感器运行研究
双绕组无轴承开关磁阻电机振动与噪声的研究
多扰动下无轴承永磁同步电机无传感器高精度估计及运行控制
新型无轴承开关磁阻电机及其控制研究