This project studies terminal Gorenstein singularities which have irreducible symplectic resolutions and related generalized G-Conifold transition based on Gromov-Witten theory. There are three kinds of above terminal Gorenstein singularities: the first two kinds are A-type singularities(the corresponding symplectic resolutions are (-1,-1)-curve and (0,-2)-curve respectively), the last one kind is D-type singularity(the corresponding symplectic resolution is (1,-3)-curve). The last two kinds of terminal Gorenstein singularities are called generalized Conifold singularities. The project will construct new generalized Conifold transitions related to generalized Conifold singularities and their orbifold version of generalized G-Conifold transitions. Generalized G-Conifold transitions can be regarded as certain mirror symmetry between complex geometry and symplectic geometry. The above generalized G-Conifold transition and inverse generalized G-Conifold transition constitute the so-called singular symplectic flops. We will study the geometrical and topological properties under such singular symplectic flops and study corresponding quantum naturality and Ruan conjecture. Moreover, we will extend the above cases to the cases of Kollar length > 2.
本项目基于Gromov-Witten理论研究具有不可约辛解消的终端格罗斯坦奇点及与之相关的广义G-Conifold变换。满足上述条件的终端格罗斯坦奇点共有3种:前2种对应A型奇点(辛解消分别对应(-1,-1)-曲线和(0,-2)-曲线),后1种对应D型奇点(辛解消对应(1,-3)-曲线)。后两种终端格罗斯坦奇点称为广义Conifold奇点。本项目将构造与上述广义Conifold奇点相关的广义Conifold变换以及相应的轨形版本的广义G-Conifold变换,广义G-Conifold变换可以看做复几何与辛几何之间的镜像对称。上述广义G-Conifold变换与逆广义G-Conifold变换可以构成奇异辛flop变换。我们将在辛几何范畴内研究上述奇异辛flop变换下的相关几何对象之间的几何、拓扑性质,并且研究相应的量子自然性问题及阮猜想。此外,我们将上述情形推广到Kollar长度大于2的情形。
本项目主要研究与带有不可约小解消(irreducible small resolution)的终端格罗斯坦奇点(terminal Gorenstein singularity)相关的广义G-flop变化并研究相应的量子自然性问题。三维终端格罗斯坦奇点的小解消分别对应于3维卡拉比-丘(Calabi-Yau)流形中的(-1,-1), (0, -2), (1,-3)曲线,其中在形变意义下,(-1,-1), (0, -2)曲线对应于A型奇点,(1,-3)曲线对应于D型奇点。本项目引入了带有复杂度的环群作用,利用相应的等变局部化技巧及相对Gromov-Witten不变量的退化公式,证明了量子上同调环结构在一种特定orbi-flop变换下是保持的,例证了Ruan猜想;利用FJRW理论的Frobenius代数部分证明了通过收缩曲线得到的D型奇点也具有LG镜像对称现象;与Futoshi Yagi一起利用物理的拓扑顶点算法计算了无障碍的曲线的Gromov-Witten配分函数,发现特定高亏格Gromov-Witten不变量的消灭性质(我们验证到亏格小于等于10),我们猜测有障碍的曲线的Gromov-Witten配分函数应当是无障碍情形的某种修正(tuning)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于腔内级联变频的0.63μm波段多波长激光器
Cannabinoid receptor GPR55 activation blocks nicotine use disorder by regulation of AMPAR phosphorylation
A label-free fluorescent probe for accurate mitochondrial G-quadruplex structures tracking via assembly hindered rotation induced emission
Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors
政策工具影响耕地保护效果的区域异质性——基于中国省际面板数据的实证研究
基于广义极化变换的无线传输理论研究
基于广义S变换的电磁环境复杂度评估理论与方法研究
Orbifold Gromov-Witten理论研究
Gromov-Witten 理论及相关问题研究