Abstract:Graphene has many advantages, such as high conductivity, high theoretical specific capacity and high specific surface capacitance, which make it a promising electrode material for supercapacitors. However, due to high preparation cost, harsh conditions and complicated process, the development of graphene is restricted in both basic research and industrial application. This project intends to directly induce 3D honeycomb porous graphene structure on polyimide films by laser. Based on the study of the effect of laser on polymer thin films and the inducing mechanism, the preparation technology of graphene with different thickness, morphology and multilayer pore structure is obtained. Furthermore, the structure and electrochemical performance of 3D graphene will be tuned through modifying the polymer substrates before and after laser inducing. Besides of simple operation and low cost, the electrode structure can be conveniently patterned, which contributes to design and optimization of in-plane device configuration. We will also explore more polymers suitable for preparing laser-induced graphene and bulid ultrathin, stable in-plane flexible supercapacitors based on laser-induced graphene. In addition, we will developed in-plane supercapacitors based on laser-induced graphene suitable for storing the energy from triboelectric nanogenerator, preparing flexible self-charged power package.
石墨烯具有高导电性、高理论比容量、高比面电容等优点,使其成为一种非常有潜力的超级电容器电极材料。但目前石墨烯的制备成本高,条件要求严苛且过程繁多制约了其在基础研究及工业应用方面的发展。本项目拟利用计算机控制的激光在聚酰亚胺薄膜上直接一步法诱导出三维蜂窝状多孔石墨烯结构。该方法不仅操作简单、成本低廉,而且可直接制备图案化电极结构。通过薄膜修饰或诱导后修饰制备出三维石墨烯基复合电极材料。通过研究激光对薄膜的作用和诱导机理,建立系统的具有不同厚度、形貌、多层次孔结构和晶体结构等特征的石墨烯的制备方法。系统研究该石墨烯基材料形貌和结构特征对电极材料的电化学性能和稳定性的影响规律,探索具有结构可调控的激光诱导石墨烯基电极材料的制备工艺。同时优化设计和制备基于激光诱导石墨烯基平面柔性超级电容器的器件构型。开发出可用于存储柔性摩擦纳米发电机能量的超级电容器,集成柔性高效自充电能量包。
开发一种大规模低成本可控制备柔性石墨烯电极的新方法,对石墨烯在电极材料基础研究及工业应用的发展具有十分重要的作用与意义。从诱导机理入手,揭示了激光对聚合物薄膜的作用和诱导机制,研究了影响石墨烯形貌、厚度、多层次孔结构、晶体结构等参数的因素和规律,掌握了石墨烯基电极材料的可控制备工艺。探索出了具有一种简便且低成本,无导电胶和粘接剂,结构可调控的三维多孔石墨烯基电极材料的制备工艺;实现了具有超薄体积、良好的柔性、适合多种基底,高功率密度和能量密度,且稳定性好的激光诱导石墨烯基平面柔性超级电容器。该三维多孔石墨烯及电极的制备方法相对简单、且成本较低, 不需要掩模板和额外的处理或复杂的操作。将有望满足大批量生产超级基于石墨烯的超薄平面柔性超级电容器,和未来应用在小型化的便携和可穿戴电子设备的需求。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于二维材料的自旋-轨道矩研究进展
基于磷酸盐/石墨烯复杂结构的柔性平面微型超级电容器研究
激光诱导还原氧化石墨及其用于超级电容器电极材料研究
基于生物质衍生物/石墨烯多级复合结构的柔性超级电容器
柔性核鞘结构石墨烯复合纤维超级电容器直接纺丝制备、界间结构调控与性能研究