Herein, we provide a brand new proposal focusing on the interfacial manipulations of novel magnetic Fe-based binary metallic composites (M-FBMCs) - which are used for assessing their adsorptive/catalytic efficacies of persulfate (PS)/H2O2 towards degrading antibiotics (ABs) and inactivating antibiotic resistance bacteria (ARB), thus probing the mechanisms on co-removing ABs and ARB in wastewaters for battling against the issue on their combined environmental pollutions. In this proposal, an integrated self-assembly strategy is expected to fabricate novel M-FBMCs. Firstly, we will systematically explore the key factors regulating the changes between the microstructures/properties of M-FBMCs and their corresponding adsorptive/catalytic efficacies of PS/H2O2 toward the co-removal of ABs and ARB, with a goal of obtaining a procedure for synthesizing microstructures/properties-controlled M-FBMCs in the light of "synthetic conditions - physicochemical characteristics -adsorptive/catalytic and antibacterial performance". Secondly, we will evaluate the effects of water quality parameters on co-removing ABs and ARB by M-FBMCs-PS/H2O2 systems in simulated wastewaters, coupling with probing their interfacial links and interaction mechanisms and developing water quality parameters-responded kinetic models. Lastly, we will conduct a comprehensive study on the performance of M-FBMCs-PS/H2O2 systems against co-removing ABs and ARB in real wastewaters, exploring a cost-effective strategy for recycling M-FBMCs and assessing the safety/biocompatibility of M-FBMCs and the changes of antibiotic resistance in ARB over the co-removal processes. Findings from this proposal are expected to develop a newly advanced process based on the accurate manipulation of microstructures/properties of M-FBMCs in a safer, more cost-effective and more recyclable way for treating wastewaters, thus providing an intellectual and technical support to design novel M-FBMCs for addressing the combined pollution issues associated ABs, ARB and antibiotic resistance genes in the near future.
针对抗生素(ABs)和耐药菌(ARB)复合环境污染问题,开展基于新型磁性Fe基二元金属复合材料(M-FBMCs)的界面调控,并用于吸附催化硫酸盐(PS)/H2O2降解ABs和灭活ARB的同步去除机制研究。本研究拟采用纳米自组装技术构建M-FBMCs,阐明M-FBMCs微结构关键调控因子对其同步去除污水中ABs和ARB效能的影响,探索出基于“合成条件—物化特征—吸附催化/抗菌性能”的M-FBMCs微结构可控制备工艺;系统研究水质条件对ABs和ARB同步去除界面影响规律与机制并建立动力学模型;考察实际污水中ABs和ARB同步去除效率,探索出M-FBMCs可重复利用的方法,评估M-FBMCs生物安全风险与同步去除时ARB抗性变化。本研究旨在构建出一种高效、经济且安全的以M-FBMCs微结构调控为基础的污水深度净化新工艺与原理,为其在ABs、ARB和抗性基因复合污染控制方面提供科学参考与技术支撑。
针对抗生素(ABs)和耐药菌(ARB)复合环境污染问题,开展基于新型磁性Fe基二元金属复合材料(M-FBMCs)的界面调控,并用于吸附催化硫酸盐(PS)/H2O2降解ABs和灭活ARB的同步去除机制具有十分重要的意义。通过项目的实施,本项目实现了M-FBMCs复合材料的可控制备及结构形貌表征,考察并明确了M-FBMCs复合材料同步去除ABs和ARB的效能,阐明了M-FBMCs同步去除ABs和ARB的机理和过程,并考察了回收利用M-FBMCs的可行性。主要完成了以下研究内容:1. 采用共沉淀法和溶剂热(水)热法耦合的纳米自组装技术制备M-FBMCs,并筛选出具备高吸附催化位点和灭菌活性、易于回收和重复利用、且抗生素和耐药菌同步去除效率高的M-FBMCs;2. 考察不同水质条件下,M-FBMCs微结构性能变化对水中不同抗生素/耐药菌单一或组合同步去除效能的影响;建立不同水质条件下M-FBMCs-PS/H2O2体系同步去除抗生素/耐药菌的动力学模型,阐明M-FBMCs-PS/H2O2体系同步去除抗生素/耐药菌微界面作用过程及其控制机制。3. 研究M-FBMCs-PS/H2O2体系去除实际污水中抗生素/耐药菌的效能,探究M-FBMCs高效再生循环使用的关键技术方法。所取得的结果对去除水体中的ABs和ARB具有理论知识和实际应用参考价值。.通过项目的实施,制备出3种性能稳定,反应活性高、易于回收的M-FBMCs复合材料,项目已发表SCI 论文 10 篇,申请发明专利 3 项,举办和参加国内外学术会议 3 次(应邀作报告 1 次),参加学术交流2次,培养博士生3名,硕士生3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
莱州湾近岸海域中典型抗生素与抗性细菌分布特征及其内在相关性
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
过渡金属吸附剂同步去除抗生素和砷的界面反应机制与功能调控原理
铋基异质结高效界面构建及其同步去除水中重金属和芳香类有机物的机理研究
磁性LDH/MIL-101(Fe)核壳式微球的构建及其对水中重金属和抗生素吸附机制研究
基于同步辐射原位QXAFS方法研究纳米Fe0去除饮用水中As(III)的反应机制