Heavy metal-antibiotic combined pollution has caused widespread concerns. For the control of the water environmental pollution problem, a novel magnetic LDH/MIL-101(Fe) core-shell microsphere is developed and used for efficient adsorptive removal of heavy metals (chromium, lead) and antibiotics (ofloxacin, sulfamethoxazole). LDH/MIL-101(Fe) microsphere features merits of stable structure, high specific surface area and adsorption capacity, renewable and recyclable. And its development also easily solve the separation problem of LDHs from aqueous solution. The structure-active relationships of structure features, interface process and adsorption characteristics for heavy metals and antibiotics are carried out at the micro-scale to modulate the physicochemical structure and adsorption performance of the magnetic LDH/MIL-101(Fe) microsphere, so as to provide theoretical basis for improving its adsorption capacity. Some material characterization techniques including FTIR, XRD, XPS, and Raman are performed to clarify the adsorption mechanisms of pollutants onto the adsorbent and the interaction between the adsorbent surface and pollutant molecules. The research results of this project will not only provide new ideas for the structure design, chemical modification and adsorption performance optimization of adsorbents with characteristics of high adsorption capacity and convenient separation, but also offer theoretical instruction and technical assistance for the removal of combined pollutants in water treatment.
重金属和抗生素复合污染问题引起广泛关注。本课题针对这一水污染的问题,构建新型磁性LDH/MIL-101(Fe)核壳式微球,实现重金属(铬、铅)和抗生素(氧氟沙星、磺胺甲恶唑)的高效吸附去除。LDH/MIL-101(Fe)具有磁性、高比表面积和吸附容量、可再生循环利用等优点,该吸附剂的构建有效的解决了水滑石类吸附剂难于从水中固液分离的难题。从微观尺度阐明LDH/MIL-101(Fe)的“结构特征”—“界面过程”—“吸附特性”之间的构效关系,为调控吸附剂的结构和界面特性、提高其吸附容量提供理论依据;结合FTIR、XRD、XPS、Raman等现代化材料分析技术,开展吸附剂吸附污染物的作用机制研究,深入分析吸附剂表面与污染物粒子间相互作用本质。本课题的研究成果不仅为具有高吸附容量、易分离特性吸附剂的结构设计、化学修饰和性能优化提供了新思路,同时也为水处理中去除复合污染物提供了理论基础和技术支持。
重金属、抗生素污染问题引起广泛关注,影响着生态环境健康和人们的饮水安全。水滑石(Layered Double Hydroxide,LDH)及其衍生物为基础的功能材料凭借着合成工艺相对简单、可调控性强和催化效率较高等优点已成水处理领域的热点,但其催化活性物种单一、环境冲击抵抗力弱、稳定性差等缺陷严重制约了LDH在的应用与发展。本项目针对上述问题,设计构建多种经济、高效、表面可调控、可重复利用的水滑石基、MIL-101(Fe)基纳米材料(AM/SDS-LDH、LDH/MIL-101(Fe)、CuAl-Cys-LDH、CoAl-LDH@CoFe-PBA、PBA-LDH、CoAl-LDH@CoSx、CuS@MIL-101(Fe)、CuS@MIL-88A(Fe)等),实现对水中典型重金属、抗生素污染物的高效去除。采用SEM、XRD、XPS、FTIR、Raman光谱等多种表征手段对上述纳米材料进行系统表征,考察了各种反应因素的影响,包括材料投加量、初始pH值、共存离子、反应时间、反应温度、真实水体环境等对污染物去除的影响,深入分析材料表面性质与污染物粒子间相互作用的本质,分析了污染物去除的中间产物和最终产物,从微观角度揭示材料对污染物去除的机理。围绕上述研究,本项目发表SCI标注论文12篇,授权国家发明专利2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
氨基修饰金属有机骨架材料MIL-101(Fe)吸附水中Cr(VI)的研究
核壳结构磁性聚膦腈纳米微球的可控制备及其对铀的吸附行为研究
Fe3O4/SiO2核壳纳米粒子修饰的新型磁性生物吸附剂制备及其对重金属吸附行为研究
海藻酸钠/石墨烯双网络纳米复合凝胶球的构建及其对重金属和抗生素吸附机制研究