Modern equipment manufacturing industry has urgent requirements on high performance transmission systems. However, due to their complex structures and harsh working environment, it is easy to result in multi-fault coupling problem in planetary gearing system. Given complicated coupling mechanisms (multi-source vibration propagation paths, mutli-fault coupling, etc.), failure signatures demonstrate obvious nonlinearity due to coupling effects between different fault symptoms. The existence of multiple fault features and their harmonic components produce intensive spectral information in the frequency domain, and the frequency aliasing becomes unavoidable. This makes it difficult to realize precise multi-fault identification. .Aiming at planetary gearing system, this project intends to conduct research on the multi-fractal characterization of vibration signal and the spectrum zooming technique. The multi-fractal theory is used to obtain multilayer singularity description of vibration signal under coupling failures. Based on that, the spectrum zooming technique is investigated to establish the zooming interpolated discrete Fourier transform using the maximum sidelobe decay window, which may significantly improve the precision and resolution of spectral analysis. The purpose of this research is to finally reveal characteristics of vibration response signal and fault behaviors under different coupling failures, and construct the multi-fractal spectrum based on the zooming technique. The work can improve the precision and resolution of the spectral analysis, and realize fault feature extraction and identification from intensive spectrum of multiple concurrent failures. It provides reliable theory and techniques for multi-fault diagnosis of planetary gear system.
现代装备制造业对高性能传动系统提出了迫切需求。然而,行星轮系复杂结构和恶劣工况条件导致其易于出现多故障耦合现象。在复杂的耦合机制(多源振动及多故障耦合)作用下,不同故障征兆交互影响导致振动响应信号形态具有显著非线性特征,多个故障特征及其谐波成分在频域空间形成密集频谱,使得信号发生频率混叠,难以实现多重故障的精确辨识。.本项目以现代装备传动系统行星轮系为对象,开展多故障耦合作用下振动响应多重分形特性及频谱细化研究。首先基于多重分形理论进行耦合故障振动响应的多层次奇异性刻画;在此基础上,研究频谱选带细化方法,探索基于最大旁瓣衰减窗口的选带细化插值离散傅立叶方法,以期提高频谱分析的精度和分辨率。通过本项目研究,最终期望揭示耦合故障的振动响应特性及故障行为,建立基于选带细化的多重分形谱,实现多故障耦合作用下密集频谱的故障特征提取与辨识,为行星轮系多故障耦合问题的诊断监测提供可靠理论和方法。
现代装备对高性能传动系统提出了迫切需求,行星齿轮传动通常具有重量更轻、体积更小的特点,而其承载能力、传动精度和传动效率却更高,因此被广泛应用于航空航天、大型船舶、工程机械、风力发电等行业的重大技术装备中。然而,现代装备自身结构复杂性以及装备运行过程中所经历的恶劣工况条件,使得多因素耦合诱发多重并发故障的装备安全事故所占比例不断增大。因此,多故障耦合(也即,多重并发故障)已成为机械故障诊断领域亟待突破的关键问题之一。.本项目针对传动系统行星轮系多故障耦合问题,从振动响应信号的几何特征和局部尺度行为进行精细刻画,对于充分认识行星齿轮传动的故障机理和故障行为,提高装备传动系统故障诊断精度,保障装备安全可靠运行具有重要的理论研究意义和工程应用前景。.项目研究所取得的重要成果包括:针对传动系统振动信号受复杂恶劣工况环境影响而干扰成分过多的问题,开展故障信号的调制机理与耦合规律研究,提出了基于加权循环谐波噪声比的故障诊断方法;针对多故障耦合下的故障行为表征,从信号频谱细化角度提出了基于平方与对数包络谱的循环谐波率,并在此基础上发展出一系列相关算法,提高了多故障耦合密集频谱的故障特征提取和辨识能力。.在本项目资助下,项目负责人获得国家发明专利授权7项,发表论文31篇(其中SCI源期刊及收录20篇,EI收录11篇)。在项目申请方面,获得了包括自然科学基金面上项目、国际创新合作项目、航空科学基金等多个项目的支持。此外,项目负责人于2018年当选为IEEE可靠性学会执行委员(IEEE RS AdCom),2019年当选为IEEE可靠性学会副主席(IEEE RS VP)。现担任IEEE Transactions on Reliability及IEEE Transactions on Instrumentation and Measurement副主编,航空学报暨Chinese Journal of Aeronautics编委,IEEE高级会员。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
基于分形维数和支持向量机的串联电弧故障诊断方法
基于FTA-BN模型的页岩气井口装置失效概率分析
基于二维材料的自旋-轨道矩研究进展
行星轮系混合故障振动调频调幅机理和诊断方法研究
变载行星轮系耦合故障机理及早期故障诊断方法研究
行星轮系复合故障的振动机理及联合字典分块稀疏诊断方法研究
间歇性低速重载行星轮系故障演化机理及其定量诊断方法研究