Oxidation protection coatings with high-performance are the key to solve the bottleneck problem of C/C composites (oxidation sensitivity) and realize their wide application. This project proposes a design of in-situ toughened SiC-ZrB2(Al) coatings. Al-doping content is used to regulate the stability and fluidity of the oxidation film and in-situ SiC toughening structures are applied to adjust the thermal shock resistance of the coating, aiming at enhancing the ultrahigh temperature/long life oxidation protection, rapid self-healing of defects, and the thermal shock resistance. The oxidation behavior of the SiC-ZrB2(Al) ceramic with different Al-doping content is investigated. In-situ toughening structures are synthesized in the SiC-ZrB2(Al) ceramic by appropriate heat treatment and their effects on thermal shock oxidation behavior are studied. According to the results of the “composition/microstructures-performance” correlation for this type of bulk ceramic, in-situ toughened SiC-ZrB2(Al) multilayer coatings (including a transition layer, a healing layer and an oxygen barrier layer) are prepared on C/C composites. The oxidation behavior of in-situ toughened SiC-ZrB2(Al) multilayer coatings is investigated in various environments. Combined with the thermodynamic and kinetic analyses, oxygen protection mechanism of the multilayer coating is illuminated. The outcome of this project will provide a significant theoretical and technological basis for the design and development of high-performance coatings for C/C composites.
高性能抗氧化涂层是解决C/C复合材料易氧化的瓶颈问题、实现其在高温热结构部件上广泛应用的关键技术。本项目提出一种自增韧SiC-ZrB2(Al)复合涂层的设计思路,旨在以Al掺杂量调控涂层氧化膜的稳定性和流动性,以原位形成的SiC自增韧结构调控其抗热震性能,以期实现涂层超高温长时氧化防护、缺陷迅速愈合和抗热冲击能力的提升。研究不同Al掺杂量SiC-ZrB2(Al)陶瓷氧化行为的演变规律;通过适当的热处理在SiC-ZrB2(Al)陶瓷中生成自增韧结构,研究其对陶瓷热震循环氧化行为的影响规律。基于该体系块体陶瓷“成分/微结构-性能”相关性的研究结果,在C/C复合材料表面制备出包含过渡层、愈合层和阻氧层的自增韧SiC-ZrB2(Al)多层复合涂层,研究其在多重环境下的氧化行为,结合热力学机制和动力学分析,阐明复合涂层的氧化防护机理,为C/C复合材料高性能抗氧化涂层的设计和研发提供理论和技术基础。
C/C复合材料是最具应用前景的高温热结构材料之一,然而,高温抗氧化性能的不足始终是制约C/C复合材料可靠应用的瓶颈问题。抗氧化涂层技术被公认为是解决这一问题的唯一途径。本项目以C/C复合材料高温氧化防护的关键基础科学问题为核心,开发了一种ZrB2-SiC(Al)涂层。研究表明,高温氧化时微量Al元素的掺杂对氧化表面玻璃膜的微结构进行有效调控,形成键强更强的Si-O-Al键,增加桥氧含量,进而提高玻璃膜的稳定性和阻氧能力;另一方面,Al元素的引入使ZrO2在玻璃膜中的溶解度增大,减少了ZrO2的析出,溶解在玻璃膜中的Zr4+与[SiO4]结构单元相互作用,形成巨大复杂的网络结构,进一步降低氧气在玻璃膜中的扩散速度。因此,涂层的抗氧化性能得到显著提升。相比于ZrB2-SiC涂层,ZrB2-SiC(Al)涂层防护下C/C基体的损伤程度减少了71%,氧化20h后的ZrB2-SiC(Al)涂层试样增重率为11.41mg·cm-2。此外,为克服陶瓷涂层本征脆性、提升其在高低温交变环境的服役性能,本项目探索了SiC纳米线、石墨烯片、还原氧化石墨烯等不同增韧结构及其数量对AlN掺杂SiC(SiAlCN)陶瓷力学性能的影响规律。研究结果表明,2wt.%添加量的石墨烯片具有最为优异的强韧化效果,陶瓷的抗弯强度平均值可达到422.6MPa,断裂韧性平均值为6.6 MPa·m1/2。裂纹偏转、裂纹分支、石墨烯桥联和拔出是主要增韧机制。项目相关研究成果阐明了Al掺杂影响涂层氧化行为的物理化学机制以及不同增韧相的强韧化机理,为新型C/C复合材料高温防氧化涂层的成分/微结构优化设计提供了理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
钢筋混凝土带翼缘剪力墙破坏机理研究
Effects of alloying elements on the formation of core-shell-structured reinforcing particles during heating of Al-Ti powder compacts
等离子反应合成纳米自增韧及复相增韧陶瓷涂层的研究
石墨烯复合陶瓷阻氚涂层增韧机理研究
SiC纳米线增韧HfC抗氧化抗烧蚀涂层研究
Cr、Nb对Fe-Al涂层增韧作用及其机制研究