o The Fe-Al coating which has excellent high temperature oxidation-resistant, corrosion-resistant,and wear-resistant performance, is a promising approach for the protection of some key parts of aeroengine at high temperature. However, the intrinsic brittleness of Fe-Al intermetallic compound limits Fe-Al coating's application. Researches show that mechanical compatibility of Fe-Al coating with metal substrate is poor, which lead to coating cracks in various circumstances, such as in cyclic oxidation enviorment. It has already become a key problem of restricting Fe-Al coating application. In this research, the influence of alloying element Cr, Nb on electronic structure and deformation mechanism of Fe-Al coating will be investigated by means of first-principles method. With this research, a Fe-Al-M(M=Cr、Nb)ternary alloys coating system with high toughness will be designed. The Fe-Al-M(M=Cr、Nb)coatings will be prepared by double glow plasma surface alloying technology. Some additional arc-light sources will be used as enhanced devices in preparing, which are beneficial to reduce the preparing temperature. The generation of brittle high-aluminum phases will be effectively suppressed in lower preparing temperature. The diffusion dynamics of Fe, Al, Cr, Nb and the coordination discharge effect between double glow and arc-light will be particularly studied. The toughness of Fe-Al-M(M=Cr、Nb)coatings will be tested and analysised by the nano indentation method and molecular dynamic simulations. The toughening-enhancing mechanism of Cr, Nb on Fe-Al coating will be meticulously researched from both microscopic level and mesoscopic level. This research will provide some new ideas and thoughts for increasing the toughness of Fe-Al coating.
Fe-Al涂层具有良好的耐高温、耐腐蚀和抗磨损性能,在航空发动机高温部件的防护中具有重要的应用前景。然而,由于Fe-Al金属间化合物的本征脆性,使得涂层与基体的力学相容性较差,在复杂工况条件下,涂层极易开裂甚至剥落,是一个亟待解决的难题。本课题通过第一性原理方法,分析合金元素对涂层电子结构和韧性的影响规律,探讨合金元素对形变机制的影响,设计具有强韧性的Fe-Al-M(M=Cr、Nb)三元合金涂层体系;采用弧光辅助等离子表面合金化方法,制备Fe-Al-M(M=Cr、Nb)涂层,通过弧光、辉光协同放电效应及扩散动力学研究,有效降低等离子表面合金化工艺温度,抑制脆性高铝化合物相形成;通过纳米压入法结合分子动力学模拟方法,进一步从微观、细观层次表征涂层韧性,分析合金元素的增韧作用,为解决该类涂层开裂和剥落提供新的思路和理论支撑。
Fe-Al 合金涂层的塑韧性和高温综合性能还不能满足苛刻服役环境的要求,严重制约了其工业化应用。合金化技术可以有效改善其塑性,但对于不同合金元素的增韧机制及高温耐腐蚀的性能的影响还缺乏系统的研究。本项目基于弧光辅助等离子表面合金化技术及第一性原理系统研究了Fe-Al-X(X合金元素)涂层的制备工艺及合金元素的增韧机制。.基于密度泛函的第一性原理方法,研究了合金元素对Fe-Al的电子结构及化学键的影响规律,系统分析了合金元素对FeAl和Fe3Al的弹性常数、泊松比等力学性能的作用机制。基于固体与分子经验电子理论,阐释了合金元素的固溶对FeAl和Fe3Al价电子结构及力学性能的影响。.采用加弧辉光等离子表面合金技术及激光熔覆技术制备了Fe-Al-Cr合金涂层。加弧辉光等离子表面合金技术制备的Fe-Al-Cr合金涂层包含有Fe2AlCr、Fe3Al、FeAl及Cr23C6碳化物相,其弹性模量为284.2Gpa(Fe-Al为176GPa),塑性变形功为5.68×10-8J,有效改善了Fe-Al的韧性;在600℃及700℃的恒温氧化中,Al2O3和Fe3O4致密氧化膜的形成使得Fe-Al-Cr合金层的氧化膜在高温环境中具有自修复能力。激光熔覆技术的应用进一步改善了Fe-Al-Cr合金涂层的力学性能。.采用加弧辉光等离子表面合金技术及热浸镀/等离子表面复合技术制备了Fe-Al-Nb合金涂层。Fe3Al、FeAl、Fe2Nb、Al3Nb及Nb碳化物等合金相在涂层中的梯度分布保证了合金涂层较高的弹性模量(260GPa)与硬度(8GPa),在900r/min条件下涂层仍无表面塑性流动和撕裂的现象发生,在600℃及700℃的高温条件下均具有优异的抗氧化性能。利用纳米压痕有限元模拟得到的应力应变分布图及载荷-位移曲线与实验曲线吻合,Fe-Al-Nb合金层与基体界面上最大切应力均小于Fe-Al的膜/基体系,表明Fe-Al-Nb合金层与基体的结合性能更好。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
Effects of alloying elements on the formation of core-shell-structured reinforcing particles during heating of Al-Ti powder compacts
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
等离子反应合成纳米自增韧及复相增韧陶瓷涂层的研究
石墨烯复合陶瓷阻氚涂层增韧机理研究
防CMAS渗入的细观增韧热障涂层的设计及其机理研究
基于纳米多层结构的cBN/GNCD刀具涂层增韧机制及性能研究