Nervous system is the center of the biological information processing in our body, in situ, efficient, and accurate acquirement of the information of neural signaling molecules is of great significance to deep insight into the life process. Electrochemical methods based on the microelectrode array (MEA) have played important roles in real-time monitoring of single cells and showed excellent prospects in biomedical research. However, reports on neurons cultured in situ and real-time monitoring are rarely seen because of the small amount of neurotransmitter and high demand for long-time culture and differentiation of neurons. In this project, we will develop novel strategies for construction of electrochemical biosensor on microelectrode array with high performance for culturing in situ and real-time monitoring of nerve cells. Firstly, various nanomaterials will be assembled on the MEA in a controllable manner to improve the detection sensitivity. Secondly, through the assembly of enzyme, realize the non-electrical activity of neural signaling molecules(such as the important central neurons of hippocampal neuron secrete glutamic acid, etc.) specific sensitive detection. At the same time, we will develop excellent cell compatible interfaces between neurons and electrode, so as to realize the long-term culture, differentiation and sensitive acquirement of the dynamic information from neurons on MEA. The project would provide useful tools for neurons culturing in situ and real-time monitoring.
神经系统是生物体信息处理的中心,原位、高效、准确的获取神经信号分子的动态信息对于深入理解生命过程至关重要。目前,基于微电极阵列(MEA) 的检测方法已在单细胞的信号分子实时动态监测方面显示了很好的前景,但由于神经递质含量极低,神经元长期培养及分化对基体电极要求甚高,至今鲜见神经元原位培养并原位实时监测报道。本项目拟在微电极阵列上构建高性能电化学传感器并用于神经元的原位培养与实时监测。通过在MEA表面可控组装纳米材料,提高神经递质信号分子检测灵敏度;进一步通过组装酶分子,实现非电活性神经信号分子(如重要中枢神经元-海马神经元分泌的谷氨酸等)特异性灵敏检测;同时利用细胞粘附小分子提高电极生物相容性,最终实现神经元在MEA表面的长期培养、分化及实时动态信息的灵敏获取。本项目的实施可望为神经细胞的原位培养与实时监测提供一种有效的方法。
神经系统是生物体信息处理的中心,原位、高效、准确的获取神经信号分子的动态信息对于深入理解生命过程至关重要。但由于神经递质含量极低,神经元长期培养及分化对基体电极要求甚高,至今鲜见神经元原位培养并原位实时监测报道。本项目成功构建了灵敏度高、稳定性好的石墨烯的场效应晶体管生物传感器用于细胞水平信号分子的实时监测,特别是我们构建了一个基于人工合成的谷氨酸受体功能化的石墨烯场效应晶体管生物传感器,实验结果证明该传感器芯片具有超高的灵敏度和特异性,能够检测浓度低至1 fM的谷氨酸,并且与其他神经递质(例如DA,NE,Ach,HI等)相比,该装置对谷氨酸具有极强的结合力。此外,该传感器芯片具有良好的生物相容性,可用于长时间的神经元培养,最后我们成功的将原代海马神经元培养在传感芯片上并原位实时地监测到其释放谷氨酸的信号。本工作是首次报道直接并且特异性的检测原代中枢神经元释放谷氨酸分子,该研究可能会对神经元通讯的本质提供重要的观察线索。此外,这项工作也为检测由细胞释放的非电化学活性的信号分子提供了新的检测途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
视网膜母细胞瘤的治疗研究进展
当归补血汤促进异体移植的肌卫星细胞存活
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
微电极阵列上功能化传感界面构建及用于单细胞实时监测研究
用于单细胞原位实时检测的超微阵列传感器研究
高性能光电化学传感器构建及用于尿汞的实时检测研究
高性能超氧负离子电致发光传感器的构建及用于细胞释放的实时检测