This project is aimed at the problems that the current technologies cannot totally mineralize persistent organic pollutants (POPs) in water, and cannot realize simultaneous recycle of resource. We put forward the idea of the coupling of electrocatalytic oxidation with advanced oxidation process based on SO4•−. And In order to fulfill high-efficient mineralization and removal of POPs via coupling of AOPs and electrochemical catalytic oxidation, we combine transition-metal oxides containing varied valence metals with carbon materials with good electric conductivity. Furthermore, we build electrocatalytic system by preparation of cathode of copper oxides or tin oxides with three-dimensional structures. Based on the system, POPs can be well mineralized on the surface of anode, and then the product of CO2 could be reduced to useful chemical materials (such as methanol, ethanol and methane). As a result, it can realize high-efficient removal of POPs and simultaneous CO2 reduction. The controllable synthetic methods, forming mechanism, the relationship of performance with their structures of the composite materials would be deeply explored. Combined with DFT methods, we would systemically study the degradation mechanism of organic pollutants, the mechanism of electrocatalytic CO2 reduction, as well as the synergistic mechanism of electrocatalytic oxidation and AOPs. And the models of degradation and mineralization of POPs coupled with simultaneous recycle of resource are elementarily established. Significantly, the above research would provide a new idea and theoretical basis for the application of the coupling of electrocatalytic oxidation with advanced oxidation process based on SO4•− in actual wastewater treatment and simultaneous recycle of resource.
本项目针对现有技术难以彻底矿化去除废水中难降解有机污染物且无法实现同步资源化等关键问题,提出电催化氧化与基于SO4•−的高级氧化技术耦合思路,将具有电催化氧化和高级氧化双功能的含变价过渡金属氧化物与具有良好导电性的碳材料结合,实现高级氧化耦合电催化氧化高效矿化去除难降解有机污染物。另外,通过制备三维含铜或锡类氧化物作为阴极,构建电催化体系,使得有机污染物在阳极高效矿化去除,同时产生的CO2在阴极电催化还原为有用的化工原料(如甲醇、乙醇和甲烷),最终实现难降解有机污染物的高效去除及同步CO2还原。系统摸索电极材料的可控合成方法、形成机理及构效关系。结合量化计算手段,深入研究有机污染物降解途径和机理、CO2电催化还原机理,电催化氧化与高级氧化协同机理以及电催化氧化和还原耦合机理,初步建立难降解有机污染物的矿化去除和同步资源化模型,为实际有机废水深度处理及资源化提供新思路和理论基础。
本项目针对现有技术难以彻底矿化去除废水中难降解有机污染物且无法实现同步资源化等关键问题,提出了电催化氧化与基于SO4−•的高级氧化技术耦合思路,将具有电催化氧化和高级氧化双功能的含变价过渡金属氧化物与具有良好导电性的碳材料结合,实现高级氧化耦合电催化氧化高效矿化去除难降解有机污染物。通过制备三维铜或锡氧化物作为阴极,构建电催化体系,使得有机污染物在阳极高效矿化去除,同时产生的CO2在阴极电催化还原为有用的化工原料(如甲醇、乙醇、甲烷等),最终实现难降解有机污染物的高效去除及同步CO2还原。系统摸索了电极材料的可控合成方法、形成机理及构效关系。深入研究了有机污染物降解途径和机理、CO2电催化还原机理,电催化氧化与高级氧化协同机理以及电催化氧化和还原耦合机理。依托本项目,获江西省自然科学一等奖1项,发表SCI论文21篇,申请发明专利9项、美国专利1项,授权发明专利5项;培养国家百千万1人、江西省青年井岗学者1人、江西省主要学科学术和技术带头人1人;另外培养博士研究生3人,硕士研究生15人,其中省优秀硕士论文获得者3人、在读博士5人和硕士19人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
动物响应亚磁场的生化和分子机制
山核桃赤霉素氧化酶基因CcGA3ox 的克隆和功能分析
湿式电催化氧化法处理高浓度难降解有机污染物的应用基础研究
金刚石膜电极直接电催化氧化降解难生化难氧化的污染物
二氧化碳电催化还原与矿化发电高效耦合研究
电催化膜-微生物燃料电池耦合技术去除难降解有机物及作用机制