As intense electromagnetic protection of electronic devices and system against complex electromagnetic environment is required, a new protection principle based on energy selective mechanism was presented in energy view of analysis of high power electromagnetic pulse protection, and a new protection structure was designed. To simulate its electromagnetic performance, a simulation model was founded by field-circuit equivalence and numerical simulation. The model was utilized to get the time-frequency response of the protection structure and to analyze its capabilities against intense electromagnetic pulse. The technical problems of ESS, as adjusting protection threshold, shorting response time and flexible or conformal design, would all be solved. To verify the protection performance of the protection structure, a piece of sample was fabricated. The novel electromagnetic protection structure has the ability to make intense electromagnetic protection compatible with signal of operation transmitting or receiving, which covers the protection means shortage in existence, and has outstanding performances of wide frequency band, huge energy capacity and self-adapting protection. This project introduces a new idea and method to electromagnetic protection, and the research would establish the foundation of a application for the new protection structure. Therefore, this project is of great value in theory and application.
针对复杂电磁环境下电子设备和系统的强电磁脉冲防护需求,本项目从能量角度分析对强电磁脉冲的防护要求,提出并研究一种基于能量选择机制的新型防护机理,根据此机理设计一种新型防护结构,利用场路等效和数值仿真两种途径建立防护结构的电磁仿真模型,计算强电磁脉冲作用下防护结构的时频响应,分析其性能,解决新型防护结构的防护阈值可控、快速响应、柔性共形设计等技术难题,制作实物并进行实验验证。 基于能量选择机制的新型电磁防护结构可实现信息化设备强电磁脉冲防护与工作信号收发的兼容,克服了现有防护手段的不足,具有工作频带宽、功率容量高、自适应防护的优点。本项目引入一种电磁防护的新方法和新思路,研究成果可为新型防护结构的应用奠定基础,具有重要的理论和应用价值。
针对信息化武器装备强电磁防护需求,本项目揭示了能量选择强电磁防护机理,提出了能量选择强电磁防护新方法,建立能量选择表面(ESS, Energy Selective Surface)设计模型,突破了基于半导体器件的能量选择表面设计、分析与测试技术。能量选择强电磁防护方法既能隔离强电磁脉冲又能保证被保护设备信号正常收发,可用于对电磁脉冲炸弹和高功率微波武器的综合防护,克服了现有防护手段无法用于信息系统前门防护的不足,为信息系统强电磁防护提供了新思路新方法。作为强电磁防护方法创新,本项目系统研究了ESS 防护机理,进行了场路联合仿真分析,设计并制作了硬质及柔性ESS实物,改进了ESS 的测试方法,对样品进行了实验测试,实验结果表明ESS 样品在工作频带的损耗小于1.5 dB,可以承受数万伏每米的强电磁攻击。为提高防护性能,项目还探索了石墨烯在能量选择防护中应用,验证了石墨烯粉体薄层代替金属材料的可行性并进行了相关实验。项目研究较好地完成了预先制定的研究计划,共发表学术论文14篇,专利1项,发表的论文分别被SCI/SCIE检索8篇。项目研究成果表明,能量选择表面能够有效防护强电磁脉冲,对电子信息系统进行电磁加固,具有重要应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
监管的非对称性、盈余管理模式选择与证监会执法效率?
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
基于电磁能量转移的等离子体破裂防护方法研究
亚纳秒级电磁脉冲防护器件作用机理与测试技术研究
电磁脉冲对微电子器件及设备的作用机理与防护基础研究
高速铁路信号系统雷击电磁瞬态耦合机制和防护方法研究