To reduce fuel consumption and greenhouse gas emissions, lightweight magnesium alloys with high specific strength and specific stiffness are potential structural materials for the next generation of transportation vehicles in the automotive and aerospace industries. Structural components the aircraft and automobiles usually undergo multiaxial loading. However, multiaxial cyclic deformation and fatigue damage mechanism of magnesium alloys have not been well studied. The overall goal of the proposed project is to experimentally investigate the multiaxial cyclic deformation and fatigue damage evolution of magnesium alloys at both macro and micro scales, and to theoretically develop multiaxial fatigue criteria to predict fatigue life and cracking behavior. This study not only has important theoretical significance, but also a vital practical value. .The proposed research will explore the multiaxial cyclic deformation and the fatigue damage evolution of magnesium alloys through experimental investigation and theory analysis. Fatigue experiments will be conducted on magnesium alloys AZ31 and AM30 using smooth thin-walled tubular specimens and plate specimens in ambient air. The research project has the following major tasks:.Ⅰ. Experimental exploration of the effects of loading path, loading magnitude, and high-low sequence loading on cyclic deformation, fatigue life, and cracking behavior. The basic loading paths include fully reversed strain-controlled tension-compression, cyclic torsion, proportional axial-torsion, 45 out-of-phase, and 90-degree out-of-phase axial-torsion. .Ⅱ. Experimental exploration of the microscopic mechanisms governing cyclic deformation and fatigue processes. The slip patterns, the formation and evolution of mechanical twins and dislocation substructures and their interaction will be observed by in-situ monitoring technique, OM, SEM, AFM and TEM. EBSD and XRD will be conducted for the analyses of the evolution of texture and misorientation distribution due to cyclic deformation. The results will be used to characterize and clarify the microscopic mechanisms governing macroscopic cyclic deformation behavior. .Ⅲ. Influence of microstructure on cyclic deformation and fatigue of magnesium alloys. Different heat treatment processes, such as solid solution, quenching, and ageing, will be further adopted to investigate the influence of heat treatment and the associate microstructure on cyclic deformation and fatigue of magnesium alloys. An artificial neural network (BP model) is trained to predict macroscale parameters (fatigue life) for any given microstructure and evaluate the effect of microstructures on fatigue damage. .Ⅳ. Development of multiaxial fatigue damage criteria based on the critical plane approach to predict fatigue life and cracking orientation. A general "unified" multiaxial fatigue criterion will be developed to consider the influence of microstructure on fatigue life.
镁合金作为21世纪"绿色"高强轻质结构材料,其多轴应力作用下循环变形和疲劳失效机制的研究几乎是空白。本项目针对镁合金进行多轴疲劳与损伤演化的试验与理论研究。以典型挤压镁合金为研究对象,通过系统的多轴疲劳试验,考察镁合金不同热处理状态下的疲劳和循环变形行为。结合开发的原位在线观测技术及多种测试分析方法,探讨材料宏观循环变形行为与微观结构演化之间的关系,阐明镁合金多轴应力下的疲劳损伤演化机理和循环变形机制。采用BP神经网络建立疲劳失效分析模型,将宏观表象与微观机理联系起来,揭示微观结构对疲劳失效的影响。基于临界面法,考虑微观结构效应,建立适用于镁合金的多轴疲劳损伤模型,实现疲劳寿命及裂纹行为的预测。该研究成果为提高镁合金的疲劳性能提供可靠的试验数据,推进对密排六方晶体结构材料的循环变形与疲劳失效机制的认识,更为镁合金在工程实际中的可靠使用及其结构件的安全设计提了必要的理论依据和试验基础。
为了减少油耗和降低二氧化碳排放,具有高强、高韧、质轻特性的镁合金在汽车和航空等交通运输领域具有广泛的应用前景。航空器和汽车结构部件经常遭受多轴载荷的作用,而镁合金在多轴加载下的循环变形和疲劳失效机制的研究几乎是空白。本项目从宏观和微观两方面调查镁合金的多轴循环变形和疲劳损伤演化行为,并发展多轴疲劳判据预测疲劳寿命和裂纹行为。以典型镁合金AZ31B、ZK60、AZ80为研究对象,通过不同加载路径和加载方式下的疲劳试验,揭示了不同微观结构下加载路径和加载历史对宏观循环变形和疲劳行为的影响。结合OM、SEM、XRD和EBSD等微观测试,探明了宏观循环变形行为与微观结构演化之间的关系,揭示了复杂循环变形下的疲劳损伤机理。基于人工神经网络理论,建立了疲劳失效估算的计算机仿真模型,揭示了主控因子对疲劳失效的作用机制。基于临界面法,建立了适用于镁合金的多轴疲劳损伤模型,以疲劳试验结果验证了模型的有效性,实现了疲劳寿命及裂纹行为的预测。该研究成果为提高镁合金的疲劳性能提供了可靠的试验数据,推进了对密排六方晶体结构材料的循环变形与疲劳失效机制的认识,更为镁合金在工程实际中的可靠使用及其结构件的安全设计提供了理论和试验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
中国参与全球价值链的环境效应分析
基于多模态信息特征融合的犯罪预测算法研究
室温变形镁合金多轴循环塑性本构宏微观研究
比例与非比例多轴加载下蠕变-疲劳寿命的统一预测法
多轴变幅加载下疲劳小裂纹特性实验研究与全寿命预测方法
多轴非比例加载高周疲劳特性的研究