Being an effcient way to greatly improve the producing capacity of microbial strains, genomic evolution is the core research area in fermentative industry. The recombinant efficiency of oligonucleotides will be enhanced by knocking out the native genetic recovery system and over-expressing endogenous DNA recombinases in Saccharomyces cerevisiae, an industrial producer of S-adenosyl-L-methionine (SAM). The MAGE evolution procedures of this genetically engineered yeast will be optimized to establish an efficient MAGE evolution method for industrial yeast. Through synthetic biological technique, the gene circuits of report protein expression stimulated by SAM will be constructed in S. cerevisiae, to develop a novel high-throughput screening approach for live cells. The SD sequences and promoters of 25 key enzymes from the SAM biosynthetic pathway of S. cerevisiae will be evolved via multiple MAGE cycles under the antibiotic selection pressure. The selected high producer will be analyzed via gene sequencing and allelic PCR to find out the possible effects of mutated SD sequences and promoters on the SAM titer of S. cerevisiae. Our program shall develop a SAM high producing strain without the addtion of L-methionine precursor, and establish a high-throughput MAGE technical platform to evolve the genome of industrial yeast for the improvement of producing capacity.
通过基因组进化大幅度提高微生物菌种生产性能是工业生物技术的核心课题之一。通过敲除遗传修复系统和过表达重组酶,提高寡核苷酸在产S-腺苷-L-蛋氨酸(SAM)工业酿酒酵母基因组上的重组效率,建立寡核苷酸介导高效进化酵母基因组新技术。同时在工业酿酒酵母细胞内构建SAM浓度激发报告基因(荧光和抗性)表达的基因电路,建立高通量筛选新技术。选取工业酿酒酵母SAM合成网络途径中25个关键酶基因SD序列和启动子进行在抗性选择压力下的多轮MAGE连续进化,获得高产SAM突变株。最后开展高产菌相关基因测序和等位基因PCR技术分析,阐明高产菌中SD序列和启动子突变对酿酒酵母菌合成SAM能力的影响规律。总之,本项目不仅实现在不添加前体条件下SAM的高效生物合成,而且将有效拓展了MAGE技术的应用范围和提高进化效率,建立起酿酒酵母利用MAGE技术连续进化基因组提高生产性能的技术平台。
基因组进化是改造工业微生物菌种高产各种代谢产品的核心技术之一。首先通过构建 单倍体酵母菌株和提高体内基因重组效率,探索了酿酒酵母寡核苷酸介导的多种基因组改造和进化技术,成功在工业酿酒酵母中建立基因组CRISPR/Cas9技术,具有高效性。通过单一Cas9-VPR融合蛋白同时实现基因的激活、抑制和敲除,发展了多功能的基因组编辑技术,进而在谷氨酸棒杆菌中也实现了双功能的基因组编辑技术。建立高效灵敏的基于基因电路的高通量筛选高产SAM菌的新方法,并结合sgRNA文库的构建,实现在酿酒酵母全基因组规模上的基因组进化和随后的高通量筛选。经过3轮酿酒酵母全基因组规模上的突变和高通量筛选,发现了多个高产SAM的靶标。在工业酿酒酵母上验证了高产靶标的有效性,并结合各种代谢工程改造,将SAM的生产水平从6克/升提高到20克/升以上。这一酿酒酵母全基因组水平上的连续进化策略也适用不同微生物不同产品的生产水平的提高,具有重要的理论和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer’s disease
Natural Graphene Microsheets/Sulfur as Li-S Battery Cathode towards >99% Columbic Efficiency & 2000 Cycles
Dyslipidemia induced large-scale network connectivity abnormality facilitates cognitive decline in the Alzheimer’s disease
编程可控的基因增变器及其在酿酒酵母基因组连续进化中的应用
酿酒酵母菌驯化群体的进化基因组学研究
酿酒酵母丙二酰辅酶A动态感应元件的构建及其调控的基因组体内连续进化系统的设计
水平基因转移对酿酒酵母基因组进化和表型性状的影响