High density hydrocarbons is one of the high performance fuels that can effectively improve the propulsion performance of aircraft commonly used in modern strategic and tactical weapons due to their high volumetric energy density. Combustion processes of high density hydrocarbons is carried out in a wide range of pressure and temperature conditions, however the detailed combustion kinetic mechanism still remains unclear. Accurate information of laminar flame characteristics of high density hydrocarbon is the key to understand the combustion mechanism and improve the combustion efficiency. This proposal intends to develop a methodology allowing measuring laminar flame speed of high density hydrocarbons in a wide range of pressure and temperature conditions through theoretical analysis, experimental research and numerical calculation. The measurement uncertainty will be analyzed in detail and the correction coefficient for experimental measured laminar flame speed will be given. Then, measurements will be conducted for typical high density hydrocarbon fuel used in China i.e. HD-01 and the blended fuel mixed by HD-01 and RP-3 kerosene under a wide range of pressure, temperature and equivalence ratio conditions. The dependency correlation between laminar flame speed and temperature, pressure and equivalence ratio will be proposed. By using the combustion kinetic mechanism of HD-01, the sensitivity analysis and reaction path analysis will be performed to clarify the influence of main elementary reaction and species on the laminar flame speed in different combustion conditions. By using skeletal reduction method and global reduction method, the detailed mechanism of HD-01 will be reduced. The merits of the present work are to establish the data base of laminar flame speed of high density hydrocarbon fuels in wide range working conditions including pressure, temperature and equivalence ratio and to obtain a CFD usable simplified skeletal mechanism of high density hydrocarbons, which has essential academic values and engineering practical significances.
高密度烃因其体积热值高,能为飞行器提供更多的推进动力,是现代战略战术武器的高性能燃料之一。高密度烃燃烧在宽压力温度及当量比条件下进行,此条件下其反应机理尚不清楚。准确的层流火焰传播特性信息是厘清高密度烃燃烧反应机理和提高燃烧效率的关键。本项目拟通过理论分析,实验研究和数值计算相结合的方法,发展适用于宽域条件下火焰传播速度的测量方法,通过误差来源分析,获得修正系数,测量宽压力温度及当量比范围内国产典型高密度烃HD-01及其与RP-3复配燃料火焰传播速度,拟合得火焰传播速度与温度、压强、当量比的关系式。开展高密度烃化学反应机理敏感性分析和反应路径分析,揭示不同初始条件下主要基元反应和敏感物种对火焰传播速度的影响规律。使用骨架和总包相结合的方法对反应机理进行简化。本项目研究,有望建立国产高密度烃宽域条件下火焰传播速度数据库,获得能够用于CFD燃烧计算的简化机理,具有重要的科学意义和工程价值。
高密度烃因其体积热值高,能为飞行器提供更多的推进动力,是现代战略战术武器的高性能燃料之一。高密度烃燃烧在宽压力温度及当量比条件下进行,此条件下其反应机理尚不清楚。准确的层流火焰传播特性信息是厘清高密度烃燃烧反应机理和提高燃烧效率的关键。本项目通过理论分析,实验研究和数值计算相结合的方法,发展了适用于宽域条件下火焰传播速度的测量方法,通过误差来源分析,获得修正系数,测量了宽压力温度及当量比范围内国产典型高密度烃HD-01及其与RP-3复配燃料火焰传播速度,拟合得到火焰传播速度与温度、压强、当量比的关系式。开展高密度烃化学反应机理敏感性分析和反应路径分析,揭示不同初始条件下主要基元反应和敏感物种对火焰传播速度的影响规律。使用DRGEP方法对反应机理进行简化。本项目研究,建立了国产高密度烃宽域条件下火焰传播速度数据库,获得能够用于CFD燃烧计算的简化机理,具有重要的科学意义和工程价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
近 40 年米兰绿洲农用地变化及其生态承载力研究
宽压力范围合成气预混火焰的燃烧和污染物生成特性
负压下的层流预混火焰结构及火焰不稳定机理研究
电场下火花点火预混火焰传播特性的研究
正丙苯及异构体的层流预混火焰研究