Many achievements have been reported in the design of magnetic resonance imaging contrast agents, but we are still facing big challenge in early diagnosis of cancers by MRI. In order to sensitively detect the tumor in the early stage, in one hand we need to significantly improve the relaxivity (r1) per gadolimium(III). In the other hand we need to remarkably increase the accumulation effect of contrast agents in tumor. In this proposal, we plan to design and construct porous gold-nanosponge geometrically confined, erythrocyte membrane-coated and aptamer-targeted contrast agents with high relaxivity and high tumor accumulation, then systematically study the tumor magnetic resonance imaging of these agents. These contrast agents will be constructed as following: First, the nanoporous gold nanosponge will be synthesized with the controllable particle size and pore diameter. The several generations of biocompatible lysine dendrimer will be synthesized, then coupled with Gd-chelate (Gd-DOTA) with defined structures (then the defined molecular sizes). These Gd-DOTA-dendrimers with different molecular sizes will be loaded inside nanoporous structure of gold nanosponge. Based on the classical theory for predicting the efficiency of contrast agents, the geometrical confinement effect of nanoporous structure should dramatically enhance the relaxivity. Second, Gd-DOTA-dendrimer loaded gold nanosponge will be coated with erythrocyte membrane. Properties of erythrocyte membrane such as the structure and surface proteins have been taken as designing cues to devise the new delivery platform with long circulation and super stability in vivo. Finally, to endow the nano-carrier with high specific targeting efficiency, the DNA aptamer for HER2 protein on cell membrane will be isolated through Cell-SELEX and the engineered targeted cell line which is overexpressed HER2 on the control HER2-negative cell line. The aptamer is then conjugated with three kinds of hydrophobic molecules (lipid, cholesterol, cyclodextrin), and the synthesized conjugate is then inserted and self-assembled into the lipid bilayer of erythrocyte membrane to allow stable anchoring of the targeting aptamer on the membrane surface. This project will systematically investigate the synthesis procedure, characterization, in vitro and in vivo MRI imaging, especially the relationship between the geometrical confinement effect and the sizes of nanopores and dendrimers. It is expected to reveal the general mechanism for the construction of MRI contrast agents with high relaxivity and high tumor accumulation based on porous gold-nanosponge geometrically confined, erythrocyte membrane-coated and aptamer-targeted contrast agents. This study will open a new direction for developing new types of high relaxivity contrast agents based on different aptamers and erythrocyte membrane coating, then promoting clinic early diagnosis for various cancers.
MRI造影剂研究虽然取得诸多进展,但在肿瘤早期诊断方面还面临挑战。如何在肿瘤较小时测到信号,一方面要提高单位浓度钆的弛豫率,另一方面要提高钆在肿瘤部位富集效率。面对早期诊断重大需求,本项目拟构建基于多孔金纳米海绵的空间限阈效应、红细胞膜包裹、适配体靶向的高弛豫率高肿瘤富集造影剂。以弛豫理论为依据,在金纳米海绵孔里载一定尺寸钆基树型分子,因纳米孔限阈效应,将会极大提高单位浓度钆的弛豫率。为了提高钆在肿瘤部位富集效率,一方面利用红细胞膜整合技术在纳米海绵表面包裹上红细胞膜,提高载体在活体内稳定性;另一方面,构建HER2高表达工程化细胞,通过Cell-SELEX筛选高特异识别肿瘤细胞膜上HER2的适配体,将适配体与可自组装进红细胞膜的三种疏水分子交联,可实现适配体在红细胞膜上的自组装修饰。本项目以期探索构建高弛豫率高肿瘤富集MRI造影剂的一般规律,为其在肿瘤早期诊断的应用提供理论依据和实验基础。
MRI造影剂在肿瘤早期精确诊断上还面临挑战。为了在肿瘤较小时检测到信号,一方面需要提高单位浓度钆的弛豫率,另一方面需要提高钆在肿瘤部位的富集效率。本研究基于MRI造影剂的工作原理,通过限制钆基造影剂在合适孔径的多孔材料中,利用限阈效应极大提高造影剂的弛豫性能。同时,引入靶向功能来增加造影剂在肿瘤部位的富集效率。在此基础上,利用高性能的靶向MRI造影剂作为治疗的影像指导工具,提高肿瘤治疗效果,减小副作用。其一,基于限阈效应,构建装载有氧化钆纳米颗粒的介孔碳纳米球,并修饰RGD靶向基团,实现对肿瘤的高效诊断。其二,制备具有不同孔径的介孔硅纳米颗粒,系统探究了孔径大小对限阈效应增强弛豫性能的影响。其三,制备了多孔金银纳米颗粒来装载氧化钆纳米颗粒用于限阈提高弛豫性能,同时利用聚多巴胺包裹纳米颗粒表面,并进一步修饰靶向基团和装载抗癌药物,得到可MRI影像指导的纳米治疗平台。本项目探索了构建高弛豫率高肿瘤富集MRI造影剂的一般规律,为其在肿瘤早期诊断的应用提供了理论依据和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
特斯拉涡轮机运行性能研究综述
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
高载药率的多重靶向抗肿瘤纳米药物载体研究
金纳米结合物作为肝肿瘤靶向治疗系统的构建和研究
肿瘤淋巴管特异转运的MRI造影剂的研制与淋巴微转移的靶向成像
高效肿瘤靶向的载钆聚合物纳米造影剂的制备和MRI研究