分形的傅里叶分析

基本信息
批准号:11901593
项目类别:青年科学基金项目
资助金额:28.90
负责人:陈祥宏
学科分类:
依托单位:中山大学
批准年份:2019
结题年份:2022
起止时间:2020-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:
关键词:
限制性定理
结项摘要

The applicant plans to research two Fourier-analytic problems associated with fractals. The long term research objective is to identify extremal fractals that satisfy certain Fourier-analytic properties in an optimal way. Probabilistic methods are often employed to produce near-optimal results in such problems. However, obtaining truly optimal results tends to require substantial new ideas exploiting hidden correlation in the problem. The applicant proposes the following main projects: ..(1) Construction of fractals that satisfy the best possible Fourier restriction property under the dimension constraint. In joint work with Andreas Seeger, the applicant has obtained a partial result in the case when the dimension of the fractal divides the ambient Euclidean dimension. In the general case, the applicant proposes to approach the problem by extending Bourgain's result on Lambda(p) sets to the fractal setting. ..(2) Construction of Ahlfors regular Salem fractals. In 2004, Mattila posed the question whether there exists a fractal on the real line that satisfy both the Ahlfors regularity and the endpoint Fourier decay property. The applicant proposes to investigate this question by reducing it to related problems in the discrete setting, where in particular one needs to understand an intriguing uncertainty-type principle.

申请人计划研究两个与分形相关的傅里叶分析问题.主要研究目标是对给定的分形维数寻找最优的分形集,以满足特定的傅里叶性质.虽然这类问题往往可以通过随机构造的方法得到近似最优的结果,然而要找到真正最优的分形集还需深入挖掘问题本身的内在结构.申请人计划研究以下具体问题:..(一)对给定的分形维数,构造满足最佳傅里叶限制性估计的分形.申请人与Seeger在2017年对分形维数整除欧氏空间维数的情形解决了该问题.对于一般情形,申请人计划通过把Bourgain关于Lambda(p)集的工作推广到分形集来解决这个问题...(二)构造具有Ahlfors正则性的Salem分形.Mattila在2004年提出一个问题,即实轴上是否存在同时满足Ahlfors正则性和最佳傅里叶衰减率的分形.申请人计划将此问题归结为离散情形的相关问题来研究,特别地归结为理解离散傅里叶变换的某类不确定原理.

项目摘要

本项目研究与分形相关的若干傅里叶分析问题,研究目标在于寻求分形集的最优化构造,使之满足特定的傅里叶性质.研究内容包括傅里叶级数的发散点集、缺项三角级数的最大模估计及Λ(p)性质、平面Kakeya集的最小化问题等.研究成果包括与合作者在球面上推广Kolmogorov的几乎处处发散傅里叶级数例子、证明球面上线性薛定谔方程解的最佳光滑化估计、建立半周期线性薛定谔方程解的局部光滑化估计等.上述成果分别发表在《Rev.Mat.Iberoam.》(2020)、《J.Math.Pures.Appl.》(2022)及投稿至《J.Funct.Anal.》.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

分数阶微分方程奇异系统边值问题正解的存在性

分数阶微分方程奇异系统边值问题正解的存在性

DOI:10.13718/j.cnki.xdzk.2019.04.015
发表时间:2019
2

Ordinal space projection learning via neighbor classes representation

Ordinal space projection learning via neighbor classes representation

DOI:https://doi.org/10.1016/j.cviu.2018.06.003
发表时间:2018
3

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

DOI:
发表时间:2021
4

玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征

玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征

DOI:10.12108/yxyqc.20220505
发表时间:2022
5

基于镜像映射原理的LNG液舱压力维持系统${H_infty }$优化控制

基于镜像映射原理的LNG液舱压力维持系统${H_infty }$优化控制

DOI:10.13195/j.kzyjc.2018.0662
发表时间:2020

陈祥宏的其他基金

相似国自然基金

1

分数阶傅里叶域变尺度、多分辨分析理论与方法研究

批准号:61571454
批准年份:2015
负责人:邓兵
学科分类:F0111
资助金额:50.00
项目类别:面上项目
2

傅里叶叠层成像关键技术研究

批准号:61701321
批准年份:2017
负责人:汤其剑
学科分类:F0113
资助金额:21.00
项目类别:青年科学基金项目
3

基于傅里叶级数的空间连杆机构刚体导引综合研究

批准号:51105044
批准年份:2011
负责人:孙建伟
学科分类:E0501
资助金额:25.00
项目类别:青年科学基金项目
4

非傅里叶效应及其在微电子工业中的应用

批准号:59206056
批准年份:1992
负责人:徐云生
学科分类:E0603
资助金额:5.00
项目类别:青年科学基金项目