Efficient hydrogenolysis of lignin can provide a new route from non-fossil energy sources to aromatic chemicals. However, the complexity of the products is a problem in the hydrogenolysis process. The precise activation of C(sp2)-OMe bond in lignin unit is the key to solve it. It has been found in our previous research that Nb based oxides have the good ability of C-O bond activation. In this project, we intend to start to study from the design and preparation of Nb based materials. Coordination and electronic valence of niobium and the distance of Nb-Nb will be controled in a certain range by altering the morphology and composition of Nb based materials. Correlated with in situ characterization and calculation theory, the role of Nb based materials in the activation of C(sp2)-OMe will be fully understood. Then the Nb based materials with the ability of C(sp2)-OMe bond precise activation will be obtained. At the same time, different metal/alloy will be assembled with Nb based materials. On the basis of in depth understanding the synergistic mechanism of the hydrogenation center and the C-O activation center in the hydrogenolysis of lignin model molecules, hydrogenation component and assembly method will be optimized. The bifunctional catalysts with hydrogenation and C(sp2)-OMe activation will be constructed. The precise hydrogenolysis of C(sp2)-OMe bond in lignin unit will be achieved by converting lignin model molecules to 4-propylphenol.
木质素的高效氢解转化是非化石资源制芳香类化学品的一条新途径,而木质素单元结构中C(sp2)-OMe键的精准活化是解决木质素氢解转化产物复杂的问题的关键。我们在前期研究中发现,Nb基氧化物具有很好的C-O活化能力,为此本项目拟从Nb基材料的设计制备入手,通过改变Nb基材料的形貌及组成,在一定范围内调控Nb的配位不饱和度、电子价态及Nb-Nb间的距离;结合原位表征和理论计算,充分认识Nb基材料在C(sp2)-OMe活化中的作用本质;进而合成能精准活化C(sp2)-OMe的Nb基材料。同时,选择具有不同加氢性能的金属/合金与Nb基材料复合,在深入理解加氢中心和C-O活化中心在木质素模型分子氢解反应中的协同机制基础上,优化加氢组分和复合方法,构建具有C(sp2)-OMe氢解活化性能的双功能催化剂,将木质素模型分子转化成单一产物—4-丙基苯酚,实现木质素单元结构中C(sp2)-OMe的精准氢解活化。
对木质素单元结构中C(sp2)-OMe键进行精准催化加氢是解决木质素氢解转化产物复杂的一条有效途径。本项目首先对木质素模型化合物2-甲氧基-4-丙基苯酚的催化氢解进行了系统研究,在绿色溶剂水的存在下,此反应经历了底物水解为丙基邻苯二酚和其进一步加氢脱氧生成丙基苯酚的两个过程,其中涉及C(sp2)-OMe键的催化活化及其加氢。针对C(sp2)-OMe键活化及加氢,我们分别对Nb基材料的设计制备和加氢金属活性中心选取及与Nb基载体的协同作用进行研究。在Nb基材料方面,制备了具有不同形貌和不同配位环境的氧化铌、氮化铌、碳化铌以及P、S改性的氧化铌,结果表明,层状氧化铌因具有较多低配位的Nb物种和空位而表现出最优的C(sp2)-OMe键活化能力。在加氢金属活性中心方面,分别选取Pt、Pd、Ru和Au负载在Nb基材料上,发现简单浸渍法制备的Au/Nb2O5催化剂在丙基邻苯二酚加氢脱氧反应表现出优异的活性和选择性,同时具备很好的稳定性。然后,我们进一步利用从头算热力学计算和密度泛函理论计算方法,结合催化剂系列表征,对Au/Nb2O5的催化机理进行探究,结果表明,占据Nb晶格空位且伴生两个氧空位的Au+ (Au@Nbv-2Ov) 是最稳定的Au1物种,且在该位点上,H2异裂的活性高。此外,Au@Nbv-2Ov中的氧空位进一步增强丙基邻苯二酚的吸附,并促进C(sp2)-OMe键的活化和断裂。我们在此认识基础上,调整了Au/Nb2O5催化剂的制备方法以筛选出具有更多Au+活性位点的Au1/Nb2O5催化剂,其对2-甲氧基-4-丙基苯酚的加氢脱氧反应催化活性也随之增强,产物丙基苯酚的收率高达84.2 wt%。这再次证实Au1/ Nb2O5的高活性来源于高稳定性Au+物种。最后,我们将Au/Nb2O5催化剂用于榉木、桦木和松木木质素油的氢解反应,300 oC、6.5 MPa 氢压下反应,液态产物的总收率分别为69.5 wt%、62.5 wt%和66.3 wt%,酚类化合物的总选择性都高于96.0%。由此可见,Au/Nb2O5催化剂在木质素油直接精准加氢脱氧生成酚类化合物的反应中表现出优异的催化性能,使木质素的工业化应用成为可能。
{{i.achievement_title}}
数据更新时间:2023-05-31
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
Ultrafine Fe/Fe_3C decorated on Fe-N_x-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
sp2 C-H 键活化构筑C-C键在有机合成中的应用
季铵盐催化醛基C-H键与sp2 C-H键的氧化偶联反应研究
碳化钼基催化材料的结构设计和表面调控及其在木质素芳基醚键断裂反应中的应用
基于C(sp2)-H键活化策略的不饱和碳碳键的氢羰基化反应研究