Transcription is the mostly-regulated step of gene expression in bacteria, in which genetic information is transcribed by RNA polymerase (RNAP) from DNA to RNA. During transcription initiation, RNAP recognizes and binds to double-strand promoter DNA, and unwinds ~13 bp to form a stable RNA polymerase-promoter DNA open complex (RPo), from which RNA polymerase initiates RNA synthesis, extends and releases short RNA products, and eventually escapes promoter DNA. Previous biochemical, single-molecule, and structural studies have made significant progress on understanding the molecular mechanism of RPo formation, however the underlying mechanism of subsequent steps following RPo during latter transcription initiation stage—mainly abortive transcription and promoter escape--remains elusive. The applicant has determined crystal structures of bacterial RPo and RPo in complex with NTPs, and will continue to determine the crystal structures of subsequent intermediates during abortive transcription and promoter escape in latter stage of transcription initiation. The crystals structures would present a complete picture of transcription initiation and decipher determinants of promoter escape efficiency. The understanding of molecular mechanism of the dynamic promoter escape process would supply new strategies for designing high-efficient gene expression system for synthetic biologists, and would provide basis for discovery of bactericidal antibiotics targeting RNA polymerase.
基因转录是RNA聚合酶将遗传信息从DNA复制到RNA的过程,是细菌基因表达调控的主要阶段。基因转录起始由RNA聚合酶识别并结合启动子DNA开始,随后打开双链形成稳定中间态RPo。RNA聚合酶从RPo起始RNA合成,合成并释放大量短片段RNA,最终解离启动子DNA进入转录延伸。通过生化、单分子以及结构生物学等手段,对于RPo的形成机制已有深刻认识,然而RPo之后转录起始后期一系列过程(包括RNA延伸以及RNA聚合酶解离启动子DNA)的机制尚不清楚。申请人解析了RPo和RNA起始合成的复合物晶体结构,计划以之为起点,解析转录起始后期RNA延伸和RNA聚合酶解离启动子DNA的一系列中间态复合物晶体结构,还原转录起始后期整个过程,揭示RNA聚合酶与启动子DNA解离的决定因素。对该过程的了解能为合成生物学基因异源高效表达提供新方案,同时也能为新型RNA聚合酶抑制剂的发现提供理论基础。
基因转录是RNA聚合酶将遗传信息从DNA复制到RNA的过程,是细菌基因表达调控的主要阶段。基因转录起始由RNA聚合酶识别并结合启动子DNA开始,随后打开双链形成稳定中间态RPo,上述过程RNA聚合酶需要与启动子DNA建立特异性的强相互作用,而在转录起始后期,RNAP需要破坏上述与启动子的强相互作用进入转录延伸。RNAP如何解决上述矛盾,机制尚不清楚。在本项目研究中,我们首先解析了一系列细菌最大转录起始因子家族ECF σ因子与RNAP的复合物结构,以及ECF σ因子、RNAP和启动子DNA的复合物结构,发现ECF σ因子也具有类似于σA因子的σ finger (σR3.2)结构域,并且ECF σ因子的σ finger结构域同样结合在RNA聚合酶催化中心附近,同样与新合成的RNA有位置冲突,我们通过体外转录实验证明了其在转录起始到转录延伸的过渡中发挥重要作用。随后,我们解析了三组的细菌RNAP转录起始后期的复合物晶体结构,其中包括σA-RPitc, σH-RPitc,以及σL-RPitc,每组复合物结构中均包含了不同长度的RNA。通过这些复合物结构的解析,我们发现在转录起始后期,RNA与σ finger相互挤压,该过程逐步发生,逐渐加剧,RNA长度越长,σ finger的形变越厉害。我们提出无论对于何种σ因子,无论是从头起始还是引物介导的转录起始,σ finger结构域相当于一个弹簧,RNA在刚开始延长的过程中不断挤压这一弹簧,将NTP水解的自由能不断转换成机械能,并积累到σ finger这一蛋白弹簧上,我们提出σ finger介导的蛋白弹簧和之前报导的DNA弹簧协同工作,当两种弹簧被挤压到极限时能够促发RNAP与启动子DNA的解离。通过本项目的实施,我们发现了细菌σ因子的一个保守结构域σ finger,并且开创性的提出了在RNAP解离启动子DNA过程中的蛋白弹簧理论。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
转录组与代谢联合解析红花槭叶片中青素苷变化机制
Loss of a Centrosomal Protein,Centlein, Promotes Cell Cycle Progression
Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis
当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响
染色质改构因子调控RNA聚合酶I转录起始的研究
非编码RNA调控RNA聚合酶II转录的研究
RNA聚合酶转录非平衡态物理机制解析
RNA聚合酶II新亚基Gdown1调控转录延伸的分子机理