Organic photovoltaic cells (OPVs) have attracted more attention as a renewable energy source owing to their advantages of easy fabrication, low cost, light weight, and the possibility to fabricate flexible devices. So far, one of the most representative bulk-heterojunction polymer solar cells is the device based on a blend of P3HT as an electron donor and a soluble fullerene derivative (PCBM) as an electron acceptor, whose power conversion efficiency (PCE) reaches up to 7.4%. Compared with fullerenes, metallofullerenes have different structures, novel electronic properties and the metal-to-cage electron transfer. Using Lu3N@C80-PCBH as acceptor materials, OPV efficiencies had been prospected to be greater than 10%. To further improve the device performance, different metallofullerene derivative-based photovoltaic electron acceptors are particularly important. However, little attention was paid to it since it was difficult to get enough amounts of metallofullerenes. .Since 2008, we had established a new extraction method so that gram quantities of metallofullerenes with a high purity of 99.5% have been purified in one month. Based on this method, we have built a scaling-up pilot plant and it guarantees that we can acquire stable and enough metallofullerene materials. Having bulk quantities of these materials at hand allows us to do research in general ways to broaden the applications of meatllofullerenes. .In this proposal, we'd like to synthesize different kinds of metallofullerene derivatives and analyze them by various characterizations, to optimize their structures in order to get the photovoltaic electron acceptors with appropriate HOMO and LUMO energies. Using the improved acceptor materials and combining it with previously reported donor polymers, we hope that OPV efficiencies of the fabricated device based on metallofullerene electron acceptors will be increased. Our rich material supply, existing equipments and a great deal of experience will make it feasible.
太阳能的开发利用已成为世界关注的热点课题。富勒烯衍生物是目前文献报道的具有最高光电转化率的有机太阳能电池受体材料(7.4%)。金属富勒烯具有与之相似的共轭体系,但由于不同的结构和性质,预计可以达到超过10%的光电转化率,与多晶硅太阳能电池(15%)相比,具有更大的竞争优势。本研究将在本实验室有能力宏量制备金属富勒烯,且拥有完备的材料表征及器件制作的设备的基础上,利用多年金属富勒烯及有机太阳能电池的研究经验,制备足量的不同种类的金属富勒烯衍生物,优化金属富勒烯衍生物结构和性质,调整分子HOMO、LUMO能级和能带宽度,得到与给体材料能级匹配的金属富勒烯受体材料,并与给体材料结合制备有机太阳能电池器件, 测定其光电转换率,并结合多种检测手段对衍生物及器件的性质进行研究,探讨内嵌金属、碳笼与载流子之间的相互关系,使金属富勒烯成为具有更高光电转换效率的受体材料,提高有机太阳能电池光电转化率。
本课题是拟将富勒烯的特殊性质,应用于太阳能电池的研究, 以期在太阳能电池的光电效率等方面取得突破。项目执行期间,合成了多种富勒烯及金属富勒烯受体材料,对材料的结构进行表征,并制备了多种太阳能电池器件,对器件的性能进行优化和测试,提高了有机太阳能电池的光电转化效率。其中基于富勒烯衍生物的铅锡钙钛矿太阳能电池的光电转化效率达到10.2%。是目前报道基于铅锡复合钙钛矿材料的最高效率的太阳能电池。比文献报道的最高效率(7.23%),提高41.1%。.具体如下:1.合成了多种富勒烯及金属富勒烯衍生物BPB-M、BPB-B、和BPB-T,制备了基于富勒烯衍生物的铅锡钙钛矿太阳能电池;2. 研究富勒烯有机卤化物钙钛矿太阳能电池的同时,我们发现没有富勒烯参与的基于有机无机复合钙钛矿材料可以成为一种新型的忆阻器;3. 以六种具有不同LUMO能级的富勒烯或富勒烯衍生物作为电子传输层材料,有机无机铅锡复合钙钛矿为光活性层,制备了两种光检测器;4. 研究了ITO/Gd@C82-PVK/Al夹层器件的电化学存储性能;5. 合成了一系列茚加成富勒烯及金属富勒烯衍生物,并以P3HT为给体,合成的富勒烯衍生物为受体,制作了太阳能器件;6. 合成了两个异构体纯的富勒烯的衍生物{6}-1-(3-(Benzoyl)propyl)-{5}-1-phenyl [5.6] C61 和 1-(3-(Benzoyl)propyl)-1-phenyl[6,6]C61,并提高了其光电转化效率;7. 首次将C70、C84、Gd@C82与有机染料咔咯通过1,3-偶极加成进行反应,合成了一系列富勒烯-咔咯二元体,进一步研究了富勒烯-咔咯衍生物的光电性质;8. 完成了金属富勒烯宏量制备设备的建设,设备运行通畅,进入标准化生产阶段,使金属富勒烯从实验室阶段迈向规模化生产。.到目前为止,工作进展顺利,实现并超过了预期目标,已发表SCI论文12篇,申请及授权专利7项,培养博士与硕士生6人。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
甘丙肽对抑郁症状的调控作用及其机制的研究进展
肺部肿瘤手术患者中肺功能正常吸烟者和慢阻肺患者的小气道上皮间质转化
基于两阶段TOPSIS-DEA模型的我国商业银行经营绩效评价
近红外光响应液晶弹性体
基于内嵌金属富勒烯的量子计算材料研究
基于多维芳酰亚胺非富勒烯受体的有机太阳能电池材料与器件
基于内嵌金属富勒烯的新功能材料的合成、表征及应用研究
结构导向单金属内嵌富勒烯单晶材料的非线性光学特性研究