Taking active vibration control of space structures as the research background, and micro-vibration control of aerospace precision equipments as the ideal target application, this proposal research will develop new robust adaptive control methods and techniques using piezoelectric stacks based Multi-DOF active vibration control platform. The research will focus the following parts: integrated modeling and analysis methods for Multi-DOF active vibration control platform, online system identification methods, robust adaptive control methods and techniques for micro-vibration control, etc. A joint simulation platform will be established for in-depth analysis of Multi-DOF actuation for space devices, system modeling, parameter identification, robust adaptive control strategies, et al. A Multi-DOF active vibration control experiment platform will be constructed with high precision piezoelectric stacks to verify the theories, strategies and techniques. Engineering implementation methods will be explored in this research for micro-vibration control of space devices. Active micro-vibration control for aerospace precision equipments has always been an important direction in the field of space science and engineering, also it is a difficult task. The proposal research of robust adaptive control methods and techniques for micro-vibration control of space devices using Multi-DOF piezoelectric stacks has important scientific significance for safety monitoring and reliability assurance for aerospace devices, as there are many theories and implementation techniques need further studies and explorations.
基于空间结构振动主动控制研究背景,以航天精密装置微振动控制为理想应用目标,采用压电堆构建多自由度主动隔振平台,探索鲁棒自适应微振动控制方法与实现技术,取得创新性的科学研究成果。研究重点包括:多自由度主动隔振平台微振动集成建模与分析方法、在线系统模型辨识方法、微振动鲁棒自适应控制方法与技术等关键内容;搭建多软件联合仿真分析平台,针对空间装置微振动鲁棒自适应控制多自由度驱动、系统建模、参数辨识、控制策略等方面进行深入研究;构建基于高精度压电堆的多自由度主动隔振实验平台,使理论方法研究和实验分析验证相结合,并探求空间装置微振动控制的工程实现方法。航天精密装置微振动主动控制研究,历来是空间科学与工程领域一个重要方向和难点课题,基于多自由度压电堆驱动进行结构微振动鲁棒自适应控制方法与技术研究,对航天空间装置安全性监控和可靠性保障具有重要科学意义,相关理论方法和实现技术亟待深入探索和突破。
本项目基于多自由度微振动主动控制研究背景,通过多个压电堆作动器组合构建多自由度微振动隔振平台,以压电堆作动器建模分析、多输入多输出微振动主动控制系统辨识方法与技术、多输入多输出微振动主动控制系统鲁棒自适应微振动控制方法与技术为研究重点。利用ANSYS、ADAMS与MATLAB SIMULINK完成了多自由度微振动主动隔振机构的集成建模分析以及多软件联合仿真分析,探索了控制与结构的同时优化技术。研究了面向多自由度多输入多输出控制系统的闭环模型辨识方法,以及多输入多输出控制系统的在线模型修正方法,完成了多输入多输出闭环输出误差法、多输入多输出滤波闭环输出误差法、多输入多输出扩展闭环输出误差法的推导和实现。完成了基于多种闭环输出误差法的在线模型修正控制方法推导和实现。面向多自由度主动隔振平台的鲁棒自适应控制方法与控制器设计,研究了死区、滤波、投影和归一化等鲁棒参数自适应算法,结合了具有死区的参数自适应算法与归一化参数自适应算法,完成了相关面向多输入多输出控制的具有死区和归一化的鲁棒参数自适应算法推导分析与实现。研究了基于内模原理的多输入多输出鲁棒自适应算法,探索了基于Q参数化的多输入多输出中央鲁棒控制器设计,给出了基于Q参数化的前馈、反馈和混合鲁棒自适应控制算法推导及分析方法,给出了其在确定环境下的稳定性分析与随机环境下的收敛性分析。在相关方法研究与多软件联合仿真分析的基础上,构建了多自由度主动隔振平台,研制开发了相应的测控系统软硬件,完成了微振动主动控制实验环境与验证平台的搭建。通过实验验证了相关技术方法的可行性与相关算法的可靠性,并探索了空间装置微振动控制的工程实现方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
基于剪切式阻尼可控与末端微振动抑制的自适应鲁棒高速超精密运动控制方法研究
新型火星进入鲁棒自适应制导与容错控制方法研究
不确定系统的鲁棒与自适应混合控制
鲁棒自适应采样数据控制的研究