The organic/inorganic hybrid solar cells, which own the advantages of the high light sensitivity from the organic materials and the high charge carriers migration rate from the inorganic materials, have become a research orientation in the utilization of solar energy. But, for most of the organic semiconductors, the light absorption is limited because of their wide band gap; In addition, the interface between the organic and inorganic materials is not perfect enough, so the separation, transportation and collection of the photogenerated carriers may be impaired. The problems mentioned above have resulted in the low efficiency for the organic/inorganic hybrid solar cells. In this project, TiO2 nanotubes or nanorods will be prepared on the ITO glasses using the porous anodic aluminum oxide (AAO) membranes as the templates. A new structure of one-dimensional arrays with coaxial core-shell structure consisting of three different materials will be synthesised, where TiO2 nanotubes or nanorods act as photogenerated electrons transporting channels, the other inorganic semiconductors (PbS, Ag2S, CdTe) work as the sensitizers and organic semiconductors (P3HT, PTB7) work as the light absorption and hole transporting materials. The coaxial core-shell structure can increase the interface areas between the charge-generating and charge-transporting layers and improve the efficiency of charge transportation. In addition, by the semiconductor sensitization, interface modification and other means, the mechanism that influences the photovoltaic conversion efficiency for the coaxial core-shell heterjunction hybrid photovoltaic devices will be investigated. The effects of the arrays morphologies, light absorption properities, energy levels, interface properties on the photovoltaic performances for the devices will be studied systematically. The new structure and the discussion between the structure and the photovoltaic performance will provide a new idea for the development of the solar cells.
有机无机杂化太阳能电池结合有机材料高光敏性和无机材料高迁移率的优点,是太阳能利用的一个重要研究方向。但是由于大多数有机半导体材料禁带宽度较大,光谱吸收范围较窄,有机材料和无机材料之间不能形成良好的界面,导致杂化太阳能电池的光电转换效率较低。本项目在ITO导电玻璃上以阳极氧化铝(AAO)膜为模板调控制备的一维TiO2纳米管及纳米棒阵列为电子传输通道,不同的无机半导体PbS、Ag2S、CdTe等为敏化剂,聚合物半导体P3HT、PTB7为吸光和空穴传输材料,构建新型的三组分一维核壳式纳米阵列结构。一维核壳阵列结构可以增加电荷生成层与电荷传递层之间的界面面积,有利于提高电荷传输效率。同时,通过半导体敏化、界面修饰等方式,系统研究影响核壳结构杂化光伏器件光电转换效率的影响机制,实现阵列形貌、吸光性能、能级结构、界面性质与器件光伏性能的有机统一,为太阳能电池的发展提供一种新思路。
开发绿色可再生能源及解决环境污染问题已成为刻不容缓的任务。太阳能作为一种可再生能源,成为新世纪取代传统化石能源的最佳选择之一。TiO2拥有光稳定性好等优点,但是由于TiO2存在着自身固有缺点,影响其推广应用。因此对其改性后的异质材料的形貌、能级结构、界面性质等的研究显得尤为必要。本项目资助已发表的10篇,另有2篇已经proof的论文。培养硕士研究生4名。项目投入经费20万,支出18.62万,各项支出基本与预算相符。剩余经费1.38万元,剩余经费计划用于本项目研究的后续支出。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
内点最大化与冗余点控制的小型无人机遥感图像配准
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
TiO2基纳米线阵列核壳结构光阳极的调控制备及电荷在其中的传输机理研究
全无机核壳结构硫化铅量子点的制备及其光伏性能研究
串联式一维核壳结构纳米阵列太阳能电池的设计、制备及光伏性能研究
SnO2/CuInS2核壳纳米棒阵列的电化学可控制备及其光伏性质研究