Different from traditional manufacturing technologies, 3D printing is an additive manufacturing technology. It interprets the concepts of the modern intelligent manufacturing, resource efficiency, and personality design. Although it largely promotes the development of several fields, some crucial problems are needed to be solved..This project starts from slicers, and aims at solving several practical application problems in 3D printing. We mainly study on structural enhancement and hollowing, support-free optimization, and process-dependent topology optimization. The main contributions include: (1) For structural enhancement and hollowing, combined with bending moment mechanical principle, a global optimization framework is proposed to achieve structural enhancement and printing material reduction; (2) For inner supporting in 3D printing, we research on the mathematical principle of self-support, and propose a grouping technology to handle complex topology models based on slicers, and an optimization framework is proposed to achieve support-free printing; (3) For process-dependent topology optimization, starting from the principle of 3D printing, we propose a new topology optimization framework by considering process-dependent external loads, which provides technical support for the practical applications of 3D printing. Through the implementation of this project, new technologies and methods will be provided for 3D printing related researches and practical applications.
与传统制造技术不同,3D打印是增材制造技术,它诠释了现代制造智能化、资源效率化和产品人性化的理念,在有力地推动诸多领域发展的同时,也存在一些关键问题亟待解决。.本项目拟从切片数据出发,以解决3D打印在实际应用中的几何设计问题为目标,重点对结构增强与省材设计、自支撑优化及过程依赖的拓扑优化问题展开深入研究。具体地,(1)针对结构增强与厚度优化设计问题,结合弯曲力矩的力学原理,通过一体优化方式,解决模型结构强度和省材设计等问题;(2)针对3D打印内部自支撑问题,研究内部自支撑数学原理,建立基于切片的复杂拓扑模型的分组技术,结合切片数据,构建优化模型,实现三维模型的自支撑打印;(3)针对过程依赖拓扑优化问题,从3D打印制造原理出发,分析关键的外部载荷,研究建立过程依赖的拓扑优化模型,为3D打印面向实际应用提供技术保障。通过本项目的实施,能够为3D打印相关研究和实际应用提供新的技术和方法支撑。
本项目从切片优化方法出发,以解决3D打印在实际应用中的几何设计问题为目标,重点对结构增强与省材设计、自支撑优化及过程依赖的拓扑优化问题展开深入研究。具体地,(1)针对结构增强与厚度优化设计问题,结合弯曲力矩的力学原理,通过一体优化方式,解决模型结构强度和省材设计等问题;(2)针对3D打印内部自支撑问题,研究内部自支撑数学原理,建立基于切片的复杂拓扑模型的分组技术,结合切片数据,构建优化模型,实现三维模型的自支撑打印;(3)针对过程依赖拓扑优化问题,从3D打印的制造原理出发,分析关键的外部载荷,研究建立过程依赖的拓扑优化模型,为3D打印面向实际应用提供技术保障。通过本项目的实施,能够为3D打印相关研究和实际应用提供新的技术和方法支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
低轨卫星通信信道分配策略
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
面向3D打印的物理建模与几何优化
基于3D打印技术的结构性人工骨仿生优化设计与制备
基于遗传算法和序优化的3D打印并行自动支撑技术研究
基于程序切片的软件测试优化技术