Water pollution is becoming a serious problem threatening human health and social development. The control of water pollution is of key importance in environmental engineering. Precise determination and accurate evaluation on multifold indices, as well as the predication of the development trend, of water-pollution events are the preconditions and the essence of water-pollution control..The proposal of this project is based on the urgent scientific problems raised by the water-pollution-control engineering and on the scientific achievements of the research team in plasmonic nanophotonics, fiber-sensing techniques, and water-pollution control engineering. Considering the problems of long operation cycle, complicated system, and low specificity with the available detection techniques, we are going to develop a portable or ship-board sensor system, which integrates plasmonic photonic crystal structures on the end facets of optical fibers, for the on-site and real-time detection of industrial waste water discharge, pollution of domestic and natural water resources. The sensor system will possess multifold functions to collect enhanced fluorescence, characteristic absorption, SERS, and LSPR spectroscopic responses simultaneously, realizing on-site and real-time evaluation on the types, the concentration, the 3D distribution, and the development trend of the water-pollution events..In this project, we are going to make full use of recent advances in plasmonic photonics and their applications in sensors by the applicant, unify the high-level research teams in fiber sensing and in water-pollution control techniques, and apply on each “node” of the research program our newly developed methods or physics and advanced experimental equipment. All of these arrangements will ensure achievement of our goal and high-level research results with excellent feasibility.
水污染日益成为威胁人类健康和社会发展的严峻问题,其有效防治在环保工程中举足轻重。而对水污染多重指标精确测定、准确评价与发展预测是防治的前提和关键。.本项目针对水污染防治面临的紧迫科学问题,基于项目组在等离激元纳米光子学、光纤传感、水污染防治等领域的学术基础和技术积累,考虑现有检测技术存在周期长、系统复杂、特异性差等问题,重点面向工业排污、生活用水污染和环境水污染的现场、实时检测,提出光纤端面集成等离激元光子晶体传感器物理学研究和船载、便携式传感器系统的研制。该系统将集成荧光增强发射、特征吸收、表面增强拉曼、等离激元共振等多种参量光谱学响应特性,实现水污染种类、程度、空间分布、发展趋势实时评价。.本项目充分发挥申请人课题组在等离激元纳米光子学领域的特色,联合国内光纤传感和水污染防治领域高水平研究团队,在项目实施各个环节布局强有力学术成果和平台支持,保障完成研究目标的可行性和研究成果的先进性。
水环境的有机物污染是关系到人类健康和社会发展的重要方面。这类污染物主要包括有机农药、多环芳烃、芳香烃等人工合成物质,其化学性质稳定,很难被生物分解,且多数为一级致癌物质。长期以来,采用总有机碳含量测定方法来评价此类污染。然而,以苯系物为代表的有机污染物在水中含量极低,总有机碳含量的测定方法不但没有特异性,而且无法达到检测灵敏度。而现有的先进、高端的精密检测技术,不仅所需设备昂贵、系统庞复、检测周期长,仍然存在特异性差的问题,而且只能在实验室条件下对多级前处理后的样品进行检测,不可能实现快速、现场、大批量检测和实时监测。.本项目针对挑战性工程技术问题,凝练出系列科学问题,形成了以SERS传感为主,折射率传感、吸收和荧光光谱为辅的水环境有机污染物检测、评价体系,研制了光纤端集成的多参量传感系统,实现了苯系物等重点污染物的高特异性、高灵敏度、实时、现场检测。主要成果包括:1、发现了带间、带边等离激元,提出了曲线电子轨迹等离激元概念,系列物理学新发现成为新型SERS器件研制的坚实基础。2、发明了光纤端微纳转印、集成技术,SERS光纤激光直写技术,实现了光纤端面集成SERS、微腔器件,SERS内壁空芯光纤,SERS光子晶体光纤等传感器件。3、研制了面向水环境中有机污染物痕量、现场检测,多参量快速评价的船载和便携式光纤端集成传感器系统。4、针对环境水中典型苯系物,实现了100 ppb的检测灵敏度,达到国家一级工业排放标准。5、发表SCI论文81篇,部分成果发表于Sci. Adv.、Adv. Mater.等国际顶级期刊上;培养研究生32名,获行业优博论文提名奖1篇;申请专利30余项,获授权16项;项目组成员获多项科技奖励和学术荣誉。.本项目解决了水环境污染物检测的挑战性科学问题,首次成功将光纤端集成SERS传感技术应用于水环境中痕量有机污染物的高特异性、实时、现场评价,有力促进了相关学科领域的交叉、融合和创新性发展,为环保工程、污水处理工程提供了先进、实用的科学方案和技术途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
面向海洋地球物理研究的光纤激光水下多参量传感器
基于量子点填充的光子晶体光纤多参量荧光温度传感器研究
光纤端面的光栅耦合表面等离子体谐振传感器研究
基于光电振荡的高精度快响应多参量光纤传感技术研究