Internet of Things has been an important part of the national development strategy in the 12th five-year plan. Microwave photonics as an interrogation technique injects new vitality to traditional fiber sensing fields. Facing the great demand of civil and national security in sensing techniques, a series of innovative theoretical and experimental studies on the areas of high-accuracy and high-speed multi-parameter fiber sensing techniques based on optoelectronic oscillator (OEO) will be carried out in this project: 1) In joint operation with PLL-based time delay compensation and DSP microwave frequency interrogation techniques, multi-frequency OEO is introduced into fiber sensing sensor to improve the system performances including measured accuracy, response bandwidth, signal-noise-ratio and et al. 2) Making use of taped chirp fiber Bragg grating , fiber grating based multi F-P cavities, and all-fiber mode interferometer as sensing unit respectively, the research on multi-parameter fiber sensing for temperature, strain, pressure, vibration, refractive index, liquid level and et al based on single and multi-frequency OEO will be performed. 3) An OEO incorporating a Sagnac polarization-interference loop is proposed, and its ultra-high measured accuracy properties in sensing of angular velocity, displacement and vibration will be studied. By the means of theoretical modeling, key devices fabrication, experimental verification and system optimization, a series of new fiber sensing research achievements with independent intellectual property rights and international leading properties are expected to obtain, which can provide the theoretical and technical supports for the fiber sensing application and Internet of Things development.
在物联网上升为国家发展战略的背景下,近年来微波光子学为光纤传感领域注入了新的活力。面向民用和国家安全需求,本课题提出对基于光电振荡(OEO)的高精度快速响应多参量光纤传感技术的关键科学问题,开展一系列创新性理论和实验研究:1)将多频OEO技术引入光纤传感领域,结合环路补偿和数字频率解调技术,提升传感系统的精度、响应带宽、信噪比等性能;2)分别以拉锥啁啾光纤光栅、F-P多腔光纤光栅、全光纤模式干涉仪为传感单元,研究基于单频或多频OEO的温度、应力、压力、振动、折射率或液位等多物理量传感技术;3)提出嵌入Sagnac偏振干涉环的OEO新结构,并研究其角速度、位移或振动等物理量的超高精度测量技术。通过理论建模、关键器件制备、系统实验验证和优化,可望本项目的工作能够获得具有自主知识产权、指标领先的多项光纤传感技术新成果,为未来光纤传感应用和物联网发展提供理论和技术支持。
本课题面向物联网发展需求,将微波光子技术和光纤传感技术融合,开展了一系列基于光电振荡器(OEO)的高精度快响应的多参量光纤传感技术的创新性理论和实验研究。建立了OEO及其光纤传感的理论模型,构建分析了待测量-光信号-微波信号之间的映射机理和关系,系统研究了OEO相位噪声、边模抑制、频率可调谐范围及模式间隔对传感性能的影响。提出了多种新型高性能OEO,包括宽带频率可调OEO、基于PT-对称和主动锁模技术的OEO以及多种用于光纤传感的双频OEO,提升了OEO性能并丰富了OEO应用空间。针对不同的传感物理量,设计制作了多种基于新型光纤光栅和全光纤干涉结构的传感单元,包括涂敷有聚乙烯醇(PVA)的新型光纤光栅(FBG)和全光纤马赫曾德尔干涉仪(MZI)结构、含有磁流体的全光纤模式干涉仪,粘贴有超磁致伸缩材料(GMM)的FBG-FP、MZI以及Sagnac干涉仪等,在器件制备和参数优化方面积累了丰富的经验。在此基础上,基于单频OEO分别实现了色散、距离、角速度、磁场、湿度和电流等物理量传感,与传统光纤传感系统相比,传感精度和响应速度得到了显著提升;基于双频OEO实现了磁场和温度、应力和温度以及曲率和温度等多参数高精度快响应同时传感,有效解决了交叉敏感问题。这些研究成果可为光纤传感应用和物联网发展提供理论和技术支持。在以上研究基础上共发表有效论文29篇,其中期刊论文24篇,会议论文5篇,特邀报告5次。所发表论文被SCI检索23篇(2区论文16篇,3区论文4篇,4区论文3篇),EI检索5篇。申请国家发明专利8项(已授权4项),培养研究生16名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于多频光电振荡的高分辨率快响应海洋温盐深传感技术研究
基于双频光电振荡的光纤磁场传感技术研究
基于新型解调方案的光纤光栅多参量传感网络
水下多参量光纤传感基础研究