The most difficult challenging technology for hydrostatic transmission system has always been instability pressure, coupled flow and complex pipeline distribution resulted in abundant reduction for power transmission. The key technology can be obtained in the comparative analysis of similarity principle between common pressure rail (CPR) and biological blood circulation system that is exploratory analysis to similarity principle and optimization method of functional bionic artificial decoupling strategy by using with hydrostatic transmission theory, physiological circulatory science, clinical testing methods and engineering bionic technology etc. The mainly research contents: 1) the adaptive adjustment mechanism of biological heart can be multi-angles detected through clinical equipments, the coupling control mechanism model between ventricular and atrial can be established, and the combined control law of the CPR pump system can be bionic designed and optimal analyzed. 2) The peristaltic-flow coupling behavioral regulation of vascular wall based on the fractional theoretical model can be built via clinical observation methods, the segmented peristaltic hydraulic pipeline model can be bionic designed accord to the vascular creep law, and the distributional control parameters of pipeline can be optimized by the means of the population intelligent optimization strategy. 3) The multi- fractal evolution decoupling mechanism of biological vascular network can be numerical simulated after imaging examination of radiographic inspection system, the multi-scale, multi-parameter and multi-index prediction model can be established to provide theoretical basis for bionic optimization design of the CPR pipeline layout. Therefore, the fundamental and multi-disciplinary cross research is the key point of this project, which has great theoretical significance and clinical practical value in terms of looking novel technology for fluid engineering bionic decoupling system and exploring new methods for physical simulation of physiological systems.
恒压网络系统压力失稳、流量耦联和管路分布复杂导致动力传输衰减严重等问题一直是静液传动技术最具挑战的难题。本课题在恒压网络与生物血液循环系统相似性对比中寻得可攻关的关键技术,拟联合运用静液传动理论、循环生理科学、临床检测手段及工程仿生技术,探索性分析功能仿生人工解耦的相似机理及优化方法。研究内容:1)多角度临床检测生物心脏的自适应调节机理,建立心室与心房耦合控制机理模型,仿生优化设计恒压网络主泵与辅泵的复合控制策略;2)经临床观测建立基于分数阶理论的血管壁蠕动-流动耦合行为规律模型,仿生设计分段式蠕动液压管路,优化其分布控制参数;3)成像分析数值模拟生物血管网多重分形控流解耦作用机制,建立多尺度、多参数和多指标血管系分形解耦预测模型,为恒压网络管路分布仿生优化设计提供理论基础。本课题是以基础性和交叉性为特点,将对开辟流体工程仿生解耦新技术和生理物理模拟新方法具有重大理论意义和临床实践价值。
本课题为解决恒压网络压力失稳、流量耦联和液压管路分布复杂导致动力传输损失严重的问题,结合静液传动理论、生物血液循环理论、临床检测理论和工程仿生技术,重点开展了恒压网络系统动力源仿生优化控制、精确表征血管壁与血液流动分段式仿生优化解耦控制规律以及应用分形多孔介质理论强化分析了生物血管网络输运特性研究。主要研究内容:1)采集并获取了数十余名人体的心脏不同负荷强度下的心脏生理特性和机械性能临床检测数据,探索性分析了心脏机理与恒压网络四动力源优化调控机理。2)基于分数阶理论精确建立了粘弹性与超粘弹性血管壁-血液流东运动学方程和三弹性腔九元件人体后负荷分数阶模型,经心脏主动脉弓试验数据对比可知,该模型可以精确表征分段式仿生管路数学模型。3)基于分形多孔介质理论,建立心脏血管网的分形生理学特征方程,得出了血液流量和流阻随相邻红血球距离与血球半径比、红血球半径与毛细血管管径比、血液Casson屈服应力、母管管径分形维度、毛细血管母管分形维度、毛细血管迂曲分形维度等参数变化的规律特性,并试验验证该模型合理有效。为此,本课题为开辟流体工程仿生解耦新技术和生物物理模拟新方法研究方面提供了理论基础和临床实践价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
跨社交网络用户对齐技术综述
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于碳基纤维网络的假肢手触觉感知机理及解耦方法研究
仿生主动电场定位方法系统耦合特性及其解耦方法研究
基于解剖距离及节点相似度的多尺度脑功能网络建模方法研究
自相似序列的无理指数、分形及相关问题