In the electro-hydraulic driven system of an injection molding machine, the energy efficiency has been improved by means of variable speed control. But the hydraulic impact and frequent motor brake in the working process bring about large energy consumption. The coordination control problem that how to recycle energy simultaneously from both sides described above, restricts further improvement of energy utilization. Therefore, exploring the mechanism for electro-hydraulic hybrid energy recycling and designing coordination control strategy for efficiency optimization are the key scientific problems, which have to be resolved to lower the energy consumption of injection molding machine deeply. Firstly, the mechanism of the energy transfer and dynamic allocation, which concentrates on the braking state and working state of the hydraulic link as well as the generation operation and electric operation of the electric link, is explored. And the energy conversion efficiency characteristics are analyzed. Through the establishment of the energy transfer mathematical model and simulation model, the mechanism of the electro-hydraulic hybrid energy recycling is clarified. Secondly, the decision variables of the energy saving system are determined. The coordination method for efficiency optimization based on the energy saving index function and load characteristic is designed. Coordination model is established for optimization decision. Research on the coordination control of energy recycling simultaneously at hydraulic and electric two areas is carried out, which not only realizes the braking energy automatic storage of the accumulator and super capacitor, but also completes coordination control and self-reuse of hydraulic energy storage and electrical energy storage. The implementation of the project will provide a new energy saving method for injection molding machine, as well as provide the energy saving control for other mechanical and electrical hydraulic compound control system as reference.
电液驱动型注塑机通过采用变转速控制,提高了能效,但工作过程中液压冲击和电机频繁制动均产生较大能耗,从这两个环节同时进行能量回收与利用的协调控制问题制约其能量利用率进一步提高。为此,探索电液混合能量回收再利用机理并设计效率优化协调控制策略是继续降低注塑机能耗必须解决的关键科学问题。首先,研究液压环节制动状态与执行状态以及电气环节发电运行与电动运行的能量传递与能量动态分配机理,并分析其能量效率转换特性,通过建立能量传递数学模型与仿真模型阐明电液混合能量回收再利用机理。其次,确定节能系统的决策变量,设计基于节能指标函数和负载特性的效率优化协调方法,建立协调模型进行优化决策。研究在液压和电气两个环节同时能量回收再利用的协调配合控制,不仅实现蓄能器与超级电容自动存储制动能量,而且完成液压储能与电气储能的协调配合自利用。项目的实施将提供一种注塑机节能新方法,也为其它机电液复合操纵系统节能控制提供借鉴。
注塑机工作过程中多执行机构的频繁启停和加减速,在液压和电气环节产生制动能量。现有的电液型注塑机这两部分能量都以热量的形式消耗了,且需额外增加散热环节。. 本项目开展了电液混合型注塑机系统的制动能量的回收与再利用研究。结合负载特性和注塑机工况,提出了注塑机电液混合能量协调回收控制策略,研制了基于超级电容的负载能量直接利用储能控制系统。. 围绕涉及的关键技术问题,设计交错并联零电流软开关双向DC/DC变换器,进行了系统的动态建模和控制,提出超级电容动态充放电控制思想,根据负载工况动态识别负载运行状态,实时切换储能单元的模式控制,实现了超级电容动态充放电管理和负载侧能量的直接回收再利用,在此基础上,提出了协调优化控制策略,进一步提高储能系统的能量转换效率和性能。. 项目执行过程中,取得的主要成果有:撰写学术论文7篇,其中被SCI收录1篇,中文核心期刊录用待发表3篇,投稿SCI论文 1篇和中文核心期刊2篇;申请国家发明专利4项,其中已授权国家发明专利2项;参加国内学术会议3次。. 本项目的研究成功对进一步提高注塑机能量利用率具有重要的理论意义和工程价值,此外,可为工程车辆、过程装备、重型机械、航空航天等领域的各类特殊机构机电液复合操作系统的能量效率优化提供新的解决思路与办法。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于模型预测的插电式混合动力汽车能量管理多目标协调优化控制方法研究
随机混杂预测控制的插电式混合动力系统能量管理策略优化机理
V2G模式插电式混合动力汽车的能量管理系统优化控制研究
串联式插电混合动力汽车能量管理策略优化与控制