Microtubule depolymerization have important roles in the regulation of myocardial cell activity and energy metabolism, as myocardial cell activity and contractile function of the foundation, the role of microtubules in the lack of study, electrophysiological changes. Previous research found, hypoxia induced microtubule depolymerization, free tubulin dimerization of two increased, at the same time combined with the GTP is also a corresponding increase in. According to the literatures, GTP can be activated on the cell membrane protein G receptor complex signaling pathways, thereby directly or indirectly on sodium, calcium, potassium ion channel Applied Regulation function. Thus we propose: microtubule depolymerization can be of various ion channels influence, changes in myocardial cell membrane properties, excitability and action potential of myocardial cell contraction, pulsatile, make changes, through the free tubulin dimerization of two activator of G protein signaling pathways. In summary, this study aimed to find: depolymerization of microtubules in hypoxia leads to myocardial cellular electrophysiological changes in the important role and its molecular mechanism. From a new point of view reveals severe postburn "shock heart" mechanism, to discover new important control links, and targets for the prevention and treatment of severe burns, cardiac function after damage to provide a new theoretical basis and train of thought.
严重烧伤引发的心功能损害中缺氧导致的微管解聚是重要的发生机理之一。微管解聚对心肌细胞的活性及能量代谢有重要的调节作用,作为其活性及收缩功能的重要基础的电生理变化,微管的作用缺乏研究。前期研究发现,缺氧致微管解聚后,游离微管蛋白二聚体增加,同时与其结合的GTP也相应的增加。根据文献报道GTP可以激活细胞膜上的G蛋白受体复合信号通路,从而直接或间接地对钠离子、钙离子、钾离子等通道施加调控作用。因而我们提出:微管解聚可通过游离微管蛋白二聚体激活G蛋白信号通路进而对各种离子通道产生影响,改变心肌细胞的膜学性质、兴奋性及动作电位,使心肌细胞收缩、搏动产生改变。综上所述,本研究旨在发现:微管解聚在缺氧导致的心肌细胞电生理改变中的重要作用及其发生的分子机制。从新的角度揭示严重烧伤后"休克心"的发生机制,从中发现新的重要调控环节和靶点,为防治重度烧伤后心功能损害提供新的理论依据与思路。
严重烧伤引发的心功能损害中缺氧导致的微管解聚是重要的发生机理之一。微管解聚对心肌细胞的活性及能量代谢有重要的调节作用,作为其活性及收缩功能的重要基础的电生理变化,微管的作用缺乏研究。我们的研究发现,缺氧致微管解聚后,缺氧对心肌细胞微管骨架的变化有显著影响,使微管蛋白动态平衡改变,解聚合增加,进而加强和影响了,细胞内运输,细胞黏度,能量代谢等变化.是心肌细胞缺氧后变化的重要一环.稳定微管可使这一变化停止,但可同时引发其他细胞障碍,其主要变化体现在,形态学变化,对环境适应性发生改变。GTP可以激活细胞膜上的G蛋白受体复合信号通路,从而直接或间接地对钠离子、钙离子、钾离子等通道施加调控作用。因而证实了:缺氧后微管解聚可通过游离微管蛋白二聚体激活G蛋白信号通路进而对各种离子通道产生影响,改变心肌细胞的膜学性质、兴奋性及动作电位,使心肌细胞收缩、搏动产生改变。综上所述,发现:微管解聚在缺氧导致的心肌细胞电生理改变中的重要作用及其发生的分子机制。从新的角度揭示严重烧伤后“休克心”的发生机制,从中发现新的重要调控环节和靶点,为防治重度烧伤后心功能损害提供新的理论依据与思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12
环状RNA Lrp6调控过氧化氢诱导的H9c2心肌细胞凋亡
双光镊系统研究微管聚合及解聚机理
移植胚胎心肌细胞与宿主细胞缝隙连接的电生理特性研究
中间型驱动蛋白解聚微管的分子机理初探
r氨基丁酸对心肌细胞电生理的影响及药代动力学的研究