Cardiovascular disease is one of the most serious diseases that endanger human lives. ECG signal transmission and diagnosis system is of significantly important for the monitoring and treatment of heart disease. However, in the body area network architecture, how to design an ECG monitoring system for energy efficiency and diagnostic reliability becomes a new challenge. This project focuses on the long-term and precise monitoring needs of ECG. It focuses on the basic accuracy of ECG adaptive compression and reconstruction and explores a solution to the joint optimization of the underlying transmission mechanism and the upper diagnosis algorithm from the perspective of control with an adaptive sampling technology and the multi-domain collaborative identification technology. This research focuses on three aspects: 1. Improve the accuracy of the transmission data under the conditions of system energy and bandwidth constraints, through the establishment of ECG data closed-loop transmission architecture; 2. Ensure the reliability of diagnosis of myocardial ischemia and myocardial infarction and other diseases through the design multi-domain diagnosis algorithm; 3. To build the overall system optimization problem and achieve the entire process of optimal design. This project is expected to address the problems of energy efficiency and information reliability in ECG transmission diagnosis, and systematically resolve the key issues of sampling, transmission and diagnosis from the perspective of overall system design and optimization to compensate for the theoretical gap in clinical reliable diagnosis of ECG signals.
心血管疾病是危害人类生命安全的最严重疾病之一,心电信号传输诊断系统对于心脏疾病的监控、治疗有重要意义。但是在体域网架构下,如何设计面向能量有效性和诊断可靠性的心电监控系统成为新的挑战性课题。本项目以满足心电长期、精确监测需求为核心,围绕心电自适应压缩传输重构的准确性基本问题,探索从控制角度出发的针对底层传输机制和上层诊断算法联合优化的解决方案,发展自适应采样技术和多域协同识别技术,重点开展三方面研究:1.在系统能量、带宽受限的条件下,通过构建心电数据闭环传输架构,提高传输数据的准确性;2.通过设计多域诊断算法,保证心肌缺血和心肌梗死等疾病诊断的可靠性;3.构建系统整体的优化问题,实现全流程最优化设计。本项目有望针对心电传输诊断存在的能量有效性、信息可靠性问题,从系统整体设计和优化的角度系统的解决采样、传输、诊断的关键问题,弥补心电信号临床可靠诊断的理论缺口。
心血管疾病是危害人类生命安全的最严重疾病之一,心电信号传输诊断系统对于心脏疾病的监控、治疗有重要意义。但是在体域网架构下,如何设计面向能量有效性和诊断可靠性的心电监控系统成为新的挑战性课题。本项目以满足心电长期、精确监测需求为核心,围绕心电自适应压缩传输重构的准确性基本问题,探索了从控制角度出发的针对底层传输机制和上层诊断算法联合优化的解决方案,发展自适应采样技术和多域协同识别技术,开展并完成了四方面研究:1.在系统能量、带宽受限的条件下,通过构建心电数据闭环传输架构,提高传输数据的准确性;2.通过设计多域诊断算法,保证心肌缺血和心肌梗死等疾病诊断的可靠性;3.构建系统整体的优化问题,实现全流程最优化设计;4.搭建心电自适应采样平台。本项目完成了既定研究任务,发表论文16篇,申请专利8项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
坚果破壳取仁与包装生产线控制系统设计
面向云工作流安全的任务调度方法
结核性胸膜炎分子及生化免疫学诊断研究进展
当归补血汤促进异体移植的肌卫星细胞存活
无线体域网医疗感知信息传输与处理方法的研究
体域网中基于压缩感知的生物信号压缩采样及数据压缩研究
心电地图及动态心电数据压缩方法的研究
多姿态下无线体域网高能效技术与可靠性研究