Heavy-metal nanomaterials with high atomic number (Z) values, especially gold-based materials exhibit greater mass energy absorption coefficient when compared to soft tissue, and can act as sensitizers to increase the radiation dose to the tumor while sparing normal tissue, therefore are highly promising in increasing the efficacy of radiotherapy. To address the obstacles hindering practical utility of traditional gold-based sensitizers, this research project is going to develop novel radiotherapy sensitizers that based on functional gold nanoclusters (AuNCs). We will design ultrasmall AuNCs with nucleus localization ability. We propose that the accumulation of AuNCs in cell nucleus would allow deposition of high dose radiation directly to the cellular DNA, leading to DNA damage and subsequent cell apoptosis, thus strong radiosensitization could be achieved. Moreover, the nanoclusters will be modified with two different strategies to minimize their interaction with the mononuclear phagocyte system, so that the nanoclusters could escape the rapid clearance by the reticuloendothelial system, and would be reactivated by tumor acidity in the tumor tissue to promote their cellular internalization, thus fulfilling the requirements of in vivo application. The in vitro and in vivo performance of the nanoclusters as radiosensitizers will be evaluated. Through the research of this project, we will explore the development of AuNC-based next generation radiotherapy sensitizers with good biosafety and superior radiosensitization, with the hope of contributing to the fight against tumors.
高原子序数纳米材料,尤其是纳米金材料,可使放射线能量在局部区域沉积,从而可作为放疗增敏剂用于提高放射线对肿瘤组织的损伤作用,同时降低正常组织的辐射受量,在提升肿瘤放疗效果方面有显著潜力。本项目针对传统纳米金放疗增敏剂在实际应用中面临的问题,开展基于功能性金纳米簇的新型放疗增敏剂研究。设计具有超微小尺寸和细胞核高靶向性的金纳米簇,使其靶向定位于细胞核中,从而在放射线照射下使纳米簇周围沉积的能量直接作用于DNA,以增加DNA断链损伤,实现更强烈的增敏效果。再进一步对金纳米簇进行修饰,使其可逃脱免疫系统的快速识别和清除,并对肿瘤组织的弱酸性环境响应,在肿瘤处富集并发挥放疗增敏作用,从而适合在动物体内应用。结合体外和体内实验,评价细胞核靶向性金纳米簇的放疗增敏效果。通过本项目研究,探索发展兼具安全性和强烈增敏作用的金纳米簇作为新型放疗增敏剂,以降低放疗所需剂量,提升肿瘤治疗效果。
超微小金纳米簇(AuNC)被认为介于小分子探针和传统纳米颗粒之间,它们特殊的物理化学性质,如荧光发射、X射线吸收、催化活性等,显著区别于尺寸大于2 nm的金纳米颗粒。相比于传统纳米材料,AuNC在动物体内的行为和代谢方式更接近于小分子,因此有较大潜力在疾病诊断和治疗中发挥作用。此外,超微小的尺寸使AuNC更易实现亚细胞定位,其中细胞核靶向定位的AuNC尤其值得关注,它们可望提升药物输运、基因治疗、放疗、光动力治疗等的效果。然而,目前还没有简便可靠的方法用于大量制备细胞核靶向性AuNC,核定位的AuNC对细胞的活力和增殖能力的影响也缺乏深入研究,于是,本项目主要在这两方面开展研究工作。. 我们首先设计了一种硫辛酸连接胍基的配体分子(简称为LG),以LG作为模板和修饰分子,合成了荧光金纳米簇LG-AuNC。该方法经济、可靠,适合用于大量制备靶向性金纳米簇。LG-AuNC可发射红色/近红外荧光,具有高光学稳定性和稳定分散性。我们对其结构和光学性质进行了详细表征。相比于其它金纳米簇,LG-AuNC的突出特点是其明显的正电性。细胞成像实验显示LG-AuNC可高效转染细胞,并富集到细胞核中。当把LG-AuNC注射到小鼠肿瘤组织中,也可观察到LG-AuNC进入细胞并靶向细胞核,从而证明了LG-AuNC具有细胞核高效定位和富集的能力。. 之后,我们以LG-AuNC作为增敏剂,结合X射线照射,观察对肿瘤细胞的杀伤效果。结果显示LG-AuNC确实可增敏X射线对细胞的杀伤,引起更明显的核酸放射损伤。而在细致检查LG-AuNC本身的细胞毒性时,我们发现LG-AuNC本身对细胞的活力和增殖能力均有明显影响,于是,我们转而研究LG-AuNC的抗肿瘤效果,目前的结果显示注射LG-AuNC可抑制小鼠肿瘤的生长。. 此外,本项目的研究还包括一种酸环境响应型铁配合物(Fe-ZDS)的设计和应用。该配合物由双电性多巴胺-磺酸甜菜碱配体和Fe3+组成,具有很高的生物安全性和尿液代谢效率,并且其MR弛豫度和光吸收性质呈现明显的pH响应特点。充分利用Fe-ZDS的核磁造影和光热性质,我们以小鼠肿瘤为模型,展示了MRI引导的精准光热治疗。.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
超小Au纳米团簇作为肿瘤放疗增敏剂的研究
双靶向多靶点纳米放疗增敏剂的构建及其增敏放射治疗脑胶质瘤的研究
铋基纳米类放疗增敏剂的研制及其靶向脑胶质瘤放疗相关特性的研究
多功能稀土纳米探针用于VX2瘤靶向性CT造影剂和放疗增敏剂的影像学研究