Thermal Protection System (TPS) is one of the key techniques for development of high-performance hypersonic vehicles. The quest for more-efficient thermal protection system technologies necessitates the development of lightweight, high-performance structural materials with exceptional strength and insulation. Unfortunately, these two properties tend to be mutually exclusive. In order to solve this problem, we propose a new method for preparing the bio-inspired hybrid materials with dense/porous graded structure. In this study, based on the viewpoint of integrated high temperature mechanics and heat transfer theory, we would investigate the optimization design of multi-physical parameters, multi-structural parameters and multi-objective, which could guide the dense/porous graded structure of multi-functional integrated composites. Moreover, we would develop the performance test, characterization method and performance matching of the graded composites. On the one hand, it provides theoretical analysis basis for high-temperature thermal-stress response and failure mechanism of the graded composites; on the other hand, it could provide a precise guidance on strengthening and toughening design, performance optimization, rational utilization, and life evaluation for porous ceramics. The study on bio-inspired structure is becoming a frontier field of solid mechanics. Results showed here enrich and develop the basic mechanisms of strengthening and toughening design for porous ceramics, and afford reliable foundation for this kind of composite to be used in thermal protection systems and propulsion systems for hypersonic flight vehicles.
热防护系统连接机构是近空间高超声速飞行器研制成败最为关键的技术之一。本项目针对高温热防护连接件材料与结构的力学和隔热性能不能兼顾的矛盾,通过借鉴生物复合材料的致密/多孔梯度复合结构,创新地提出金属浸渗多孔陶瓷的力学设计方法与制备工艺方法,拟实现多孔陶瓷的力学和隔热性能的协同一体化。本项目将传热学与高温力学相结合,主要通过研究多种物理参数与结构参数的材料微结构的力学优化设计方法,指导多功能一体化的致密/多孔梯度高温复合材料微结构的精确控制,发展材料的性能测试表征方法和性能匹配技术;一方面为建立材料的高温热-力耦合响应机制和高温破坏失效机理提供分析依据,另一方面为多孔陶瓷材料的强韧化设计、性能优化、合理使用以及寿命评估等提供精确指导。本项目属于前沿性的基础研究,其研究成果将进一步丰富和发展陶瓷材料强韧化的科学理论,同时为陶瓷材料在热防护系统部件上的应用提供理论基础和技术储备。
热防护系统连接机构是近空间高超声速飞行器研制成败最为关键的技术之一。本项目针对高温热防护连接件材料与结构的力学和隔热性能不能兼顾的矛盾,通过借鉴生物复合材料的致密/多孔梯度复合结构,创新地提出金属浸渗多孔陶瓷的力学设计方法与制备工艺方法,实现了多孔陶瓷的力学和隔热性能的协同一体化;同时还建立了材料的高温热-力耦合响应机制和高温破坏失效机理。本项目属于前沿性的基础研究,其研究成果将进一步丰富和发展陶瓷材料强韧化的科学理论,同时为陶瓷材料在热防护系统部件上的应用提供理论基础和技术储备。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
高温环境下热防护材料氧化烧蚀在线测试技术与失效机理研究
热-力载荷下复合材料与金属结构连接的失效机理及连接设计
Nb-Si基合金超高温涂层失效与热防护机理研究
Nb-Si基合金超高温涂层失效与热防护机理研究