Ultra-precision stage is one of the core components of ultra- precision machining and measurement equipments, such as high-grade CNC machine tool and IC manufacturing equipment. The long-stroke multi-dimensional nano-level measurement systems of these stages are usually hard to find higher precision measuring tools for traditional calibration. This project is set up for the solution to this calibration problem. Inspired by the self-calibration idea, the project tries to synthesize a long-stroke ultra-precision self-calibration scheme, including long-stroke multi-dimensional self-calibration algorithm design, random error suppression, calibration algorithm comprehensive evaluation, and self-calibration device design. The key scientific problems include long-stroke global self-calibration model and stage error separation, random error suppression and calibration algorithm evaluation, artifact plate design and measurement information precision extraction. On the side of ultra-precision self-calibration theory and scheme, this project develops a global-calibration-coordinate based long-stroke multi-dimensional algorithm with good calibration accuracy and robustness, synthesizes a self-calibration comprehensive evaluation scheme, and provides the design scheme of long-stroke self-calibration devices. The research of this project would supplement the measurement calibration theory and technology. In addition, the project tries to practically achieve self-calibration for precision stage with 300mm stroke and 100nm measurement accuracy, which would play an important role for obtaining long-stroke and nm accuracy self-calibration technology in the future.
超精密工作台是超精密加工及检测装备(如高档数控机床和IC制造装备)的核心部件,其大行程、多维、纳米级精度测量系统通常难以找到更高精度的计量工具进行传统标定。本项目针对大行程超精密工作台多维测量系统的标定难题,借鉴自标定思路,以"大行程超精密自标定方法及其应用"面临的大行程多维自标定算法、随机误差抑制、标定算法综合评估、自标定装置设计等关键环节为突破口,围绕三个关键科学问题:大行程全局自标定精细化模型与系统误差精确分离、自标定随机误差抑制与标定算法综合评估、辅助装置特征设计及测量信息精准提取展开研究。在发展超精密自标定理论和方法的层面上,拟提出一种标定精度高、随机误差鲁棒性强的基于全局标定坐标系的大行程多维自标定算法,建立自标定算法评估判据,并给出大行程自标定装置设计方案,为测量标定理论和技术提供有益补充。
超精密工作台是超精密加工及检测装备(如高档数控机床和IC 制造装备)的核心部件,其大行程、纳米级、多自由度的超精密测量和控制是实现运动性能要求的必要条件。本项目针对大行程超精密工作台精密测量系统的多维自标定和超精密运动控制难题开展系列研究。提出了大行程二/三维超精密测量系统的递推式自标定算法,鲁棒地减小随机测量噪声的误差叠加影响,同时还设计构建了辅助标定设备和自标定光学显微镜对准系统。所提算法经过仿真和原理样机的实验验证,实现了与测量噪声水平相当甚至更低的标定精度,为大行程超精密工作台自标定的工程应用提供了更为有效的参考。在超精密运动控制方面,提出了数据驱动零相位误差跟踪前馈控制、基于信号补偿的鲁棒反馈控制、数据驱动变增益离散滑模控制、神经网络学习型自适应鲁棒控制等单自由度轨迹跟踪控制策略以实现大行程高速运动的纳米级运动精度并保证运动过程中对于不确定扰动及测量噪声的影响鲁棒。基于该项目,发表有本项目基金标注的SCI论文23篇,EI论文10篇,授权发明专利20项,英文专著1部(一章),并多次获得国际国内学术荣誉。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
路基土水分传感器室内标定方法与影响因素分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于数据驱动的大行程超精密工作台多变量控制研究
光刻系统中工作台位移的长行程高精度双色差分干涉测量方法研究
基于无衍射光莫尔条纹大行程工作台运动误差测量方法研究
精密机床大尺度全载荷微进给工作台导轨系统基础研究