Traditional fin stabilizers are confronted with the problems of rough estimation for control force constraint threshold, narrow approximate linear section and asymmetric unknown saturation parameters of actuator. These problems seriously restrict the actual performance of the system. A new idea to break through the above bottlenecks is to improve the system by using the dynamic lift directly measured. Many problems caused by experiential design can be avoided. Therefore, this project focuses on three key links: dynamic lift constraint threshold, direct feedback and control. This project reveals the influence law for dynamic variation of lift caused by internal and external factors. The precise constraint threshold under multi-parameter coupling is established. The available control force section is widened and the dynamic stall of fin is prevented. The dynamic characteristics of fin axis are analyzed to realize the two-point simply supported modeling of external cantilever. The quantitative description of axle deformation is derived by using the stiffness matrix of Timoshenko beam. The laser ranging lift direct detection method is designed, which fundamentally avoids the impact of conventional indirect feedback. On this basis, a fuzzy sliding mode with optimal quadratic programming strategy is proposed to optimize the effective distribution of fin control forces. Its feasibility is verified by combining simulation tests with actual data. Considering the reliability of the conventional fin stabilizer, the precise constraints, direct feedback and control optimization for the control force under generalized disturbances are realized. This provides a new idea and theoretical basis for solving the bottleneck of the control system for a typical ocean carrier.
传统减摇鳍面临控制力约束阈值经验粗估、近似线性区段过窄和执行机构饱和参数非对称未知等问题,严重制约系统实际性能。突破上述瓶颈的新思路是利用直接测控的动态升力改进系统,从根源上避免经验设计导致的诸多问题。因此,本项目拟围绕动态升力约束阈值、直接反馈及控制三个关键环节展开研究。揭示内外因素导致升力动态多变的影响规律,确立多参数耦合下的精准约束阈值,拓宽控制力可用区段的同时防止鳍动态失速;分析鳍轴动力学特性实现外悬臂双点简支建模,利用铁摩辛柯梁理论推导轴受力形变的定量描述,据此设计激光测距式升力直接检测法,避免常规间接反馈导致的偏差;在此基础上,提出模糊滑模最优二次规划策略实现各鳍控制力的有效分配优化,并开展仿真测试与实际数据相结合验证其可行性。在兼顾常规减摇鳍系统可靠性的同时,实现广义干扰下控制力的精准约束、直接反馈和控制优化,为解决一类典型海洋运载器控制系统的瓶颈问题提供新思路和理论依据。
针对传统减摇鳍控制力约束阈值经验粗估、近似线性区段过窄和执行机构饱和参数非对称未知等问题,本项目构建了一种集动态升力模型、反馈机制及有效控制于一体的系统整体框架,为解决一类船舶运动控制系统的瓶颈问题提供了新思路和理论依据。具体包括以下三方面:① 揭示了多形态与多运动方式的减摇鳍升力机理,解决了常规减摇鳍系统建模经验粗估与保守问题。② 实现了多参数耦合作用下减摇鳍水动力模型分析与影响规律,从根源上找到系统偏差的影响因素。③ 实现了广义干扰下执行机构饱和输入受限参数非对称未知等条件下的各鳍有效分配优化控制,设计了多干扰强耦合作用下的舵鳍联合减摇系统。.依托本项基金支持,已刊出学术论文和已授权国家发明专利共计18项。其中,在船舶运动控制领域主流刊物和学术会议上刊出高水平研究论文6篇:SCI期刊收录4篇,EI期刊收录1篇,EI收录会议论文1篇。已授权国家发明专利12项。负责人依托本项目指导培养硕士研究生12名。.鉴于前瞻性、创新性和实用性等诸多优点,本项基于动态升力的减摇鳍控制研究对船舶减横摇理论和技术的发展具有重要意义,其应用前景及市场价值极具潜力。本项目研究从根源解决了上述技术瓶颈背后的核心科学问题,促使基础研究指导技术应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
零速下船舶仿生减摇鳍升力机理的研究
船舶鳍/翼鳍减横摇抗饱和智能矢量控制研究
基于变形仿生鳍的水面机器人减摇机理的研究
基于反馈控制的动态手势识别联合优化模型研究