Along with in-depth study on graphene, few- or single-layer nanosheets of molybdenum dichalcogenide (MoS2), as one of inorganic graphene analogues, opens a new era for planar materials. These 2D ultrathin atomic layer structures possess similar properties as graphene (such as large surface area, high carrier mobility, low toxicity), and also exhibit extra optical and electronic properties superior to graphene. These attributes manifest versatile applications of these materials in hydrogen storage and lithium ion battery, catalysis, optical and electronic devices as well as sensors. This project aims at developing and exploring facile and effective strategy for controllable preparation of few- or single-layer MoS2 nanosheets through systematic methodology investigation. Through detail study on the processes of liquid phase exfoliation, hydrothermal synthesis and high temperature reaction via tuning the experimental factors, the mechanism of exfoliation/formation and growth of the nanosheets will be discussed. Series of few- or single-layer MoS2 nanosheets and water-soluble single-layer MoS2 quantum dots with high quality can be achieved. In addition, hybrid nanosheets containing more planar defective sites are designed and can be obtained by chemical doping, several MoS2-based functional materials may be obtained via surface modification with functional molecules and combination with conducting components. Via reasonable structure design, activated photoelectrochemical effects are anticipated at these functional electrode materials. The activation mechanism of electrochemical and photoelectrochemical activities towards model molecule will be clarified. Based on the high selective molecular recognition towards the analysts and signal amplification strategy, high performance bioanalytical platforms may be developed. Meanwhile, application of MoS2 quantum dots for bioanalysis will be exploited. Above results may pave the way to developing novel materials of graphene analogues and exploiting the potential in bioanalysis.
继石墨烯后,少层或单层二硫化钼已成为具有里程碑意义的新型类石墨烯材料。类石墨烯二硫化钼具有与石墨烯相似的大比表面积、高载流子迁移率及与石墨烯互补的光电特性, 在能量存储、催化、光、电器件与传感等领域有潜在的应用前景。本项目拟针对材料制备及功能设计中的关键问题,从发展可控、高效制备新策略入手,通过对液相剥离、水热合成和高温化学制备等过程的系统研究,深入探讨各过程参数的动力学影响,初步揭示层间剥离/片层形成及生长的调控机制,获得系列高品质少层或单层二硫化钼及水溶性单层量子点。基于空位缺陷设计、表面能级修饰和晶面电传导调控原理,设计制备类石墨烯二硫化钼杂化及功能复合材料,拟通过对材料结构性能的调控,增强界面光电协同效应,阐明模型研究体系的界面电化学及光电化学响应机制。基于高选择性分子识别以及纳米信号放大策略,发展高性能光电生物分析平台。设计并构建二硫化钼量子点荧光分析体系,挖掘相关生物分析应用。
类石墨烯二硫化钼具有与石墨烯相似的大比表面积、高载流子迁移率及与石墨烯互补的光电特性,在能量存储、催化、光、电器件与传感等领域有潜在的应用前景。本项目针对二硫化钼片层材料制备方法不成熟、电化学、光电化学及分析研究少等问题,以制备高品质类石墨烯二硫化钼二维材料为主要目标,发展片层材料制备新策略,研究片层形成机制,实现高品质类石墨烯二硫化钼的可控制备;在此基础上,基于空位缺陷设计及功能复合原理,合成元素掺杂及功能复合的二硫化钼片层材料;同时发展过渡金属硫属化合物新型量子点的设计合成研究。基于片层材料的光/电化学活性、量子点荧光以及分子识别策略,设计并构建几种生物分析新体系,并对其分析检测性能做出评价。按项目预定情况,我们完成了类石墨烯二硫化钼片层材料、P、O、Sn元素掺杂及N-石墨烯功能复合材料的合成研究,完成了材料的电催化、拟酶活性、小分子模型体系电分析、光电化学检测性能研究,探讨了光电化学响应机制并对分析检测性能进行了评价;此外,我们还创新性地合成了高质量、水溶性的单层二硫化钼及二硫化钒量子点,系统研究了量子点的光学性能,构建几种量子点荧光分析新体系,评价了体系的分析检测性能,探讨了其在环境、食品和生物分析中的应用可行性。上述工作取得了预期的研究结果,完成了预期的考核指标。所研究的材料及分析检测方法可望成功应用于环境及食品安全分析、生物检测领域中,将在临床诊断、生物医学研究及环境食品安全分析中具有广阔的前景。在本项目的资助下,在高水平国际学术期刊发表学术论文18篇,申报国家发明专利1项,培养已毕业博士研究生3名、硕士研究生5名,其中2名博士生获得国家奖学金,3名获得吉林大学优秀毕业研究生荣誉称号。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
原位可控制备基于石墨烯-二硫化钼原子尺度的异质结及其光电性质的研究
氧化钨类石墨烯结构的可控制备及其相关光电化学过程研究
石墨烯/石墨烯基复合材料在电极表面的原位可控制备及其有机污染物检测研究
堆栈有序少层石墨烯单晶体的可控性制备及其光电属性研究