Large Relative bandwidth means a more than 25% ratio of the absolute bandwidth divided by the central frequency,whose typical systems include Ultra-wideband Radar systems, Super Low-frequency Communications, Underwater Acoustic Communications (UAC), etc. High velocity scenarios mean that the communication terminals remain high mobility, such as airborne radio station and submarine acoustic transceiver, which induces the time variation of communication channels due to the Doppler effects. This project starts from the foundation of the Doppler effects to derive a novel channel modeling method based on the scaling of the acoustic signal. Such model yields a superior performance for time-varying underwater acoustic channels compared to previous modeling methods which adopt Doppler frequency shifts to approximate the Doppler effects. Covert communications mean a low detection possibility of the communication link by the third party, requiring that the system should work under the condition of a low signal-to-noise ratio (SNR) and the transmitted signal should have a similar shaping to the background noise. This project relies on sea trial data obtained in shallow water scenarios to study signal processing algorithms for adaptive receiver designs. It smartly adopts several techniques, including using error-correcting codes, exploring the channel diversity, adaptive filtering and automatic compensation for frequency offsets, to enhance the sensitivity of the receiver and the robustness of the communication link at a low SNR. It is noteworthy that although this project takes UAC for an application example, we yet research on the process methods for the signals with a large relative-bandwidth from the aspect of signal processing algorithm. The proposed methods herein have a general functionality, which does not only apply to UAC but also are suitable for other baseband systems with a large relative-bandwidth property.
高相对带宽,是指通信系统的绝对带宽与中心频率的比值大于25%,其典型例子包括超宽带雷达系统、超低频通信系统、水下声波通信系统等。高速运动情景,是指通信终端处于高速运动状态,如机载无线电台或者潜艇水声收发器等,其引发的多普勒效应导致信道的时变性。本项目从多普勒效应本质出发推演出新颖的时变信道模型,较之以往采用多普勒频移的近似时变水声信道建模方式具有明显优化。隐秘性通信,是指通信链路被第三方侦测到的概率低,故通信系统工作需在低信噪比条件下并发送与背景噪声类似的波形。本课题结合浅水环境下的水声实测数据,研究自适应接收机的信号处理算法。通过巧妙的借助纠错编码、信道多样性、自适应滤波、频偏自动补偿等多方面因素提高接收机的灵敏度和通信链路的鲁棒性。需要指出的是,该项目虽然以水声通信为研究案例,但也适用于其他具有高相对带宽特性的基带信号系统,具有更广泛的研究意义。
对于高相对带宽信号作为数据通信方式的研究,在国内外都尚处于方兴未艾的阶段,例如极低频无线电通信系统是一种高相对带宽通信系统,而适合于远程通信的水声通信系统更是典型的高相对带宽通信系统,尤其是在浅水环境建立稳定的水声通信数据链路还都是处于起步阶段。支持水下高速运动终端、适用浅水和深海领域、且具有保密性的水下通信终端设备是国家科技发展的重要方向之一,例如国务院颁布的《国家重大科技基础设施建设中长期规划(2012-2030年)》中明确优先安排海底科学观测网络,水下遥控机器人也是国家重点扶持的方向。本课题的研究内容,可以用于推动海底石油勘探、潜艇水下通信、水下传感器远程采集、海洋污染监测、海岸水下监测网、水下无人机器人控制、浅海渔业水下通信等众多重要领域。 我们根据高相对带宽通信系统的特点,针对高速运动载体面临的情况,研究了双选doubly-selective信道下的通信系统建模方式。基于水声系统中应对高速运动的多普勒效应,提出接收机算法和系统结构,对优化接收机硬件架构进行理论研究,考查了Zero-Forcing(ZF)、Minimum Mean Squared Error(MMSE)、Decision Feedback Equalizer (DFE)、Iterative-Block DFE(IB)等多种均衡器方式的效果,还提出了多层(Multi-layer)的自适应迭代均衡器的设计方法,对其中的锁相环(PLL)的建模进行了探索。同时,还对隐秘性较好的0dB峰均比常包络OFDM系统的系统分析。为了增强信号增益强度,多协作通信办法是一种良好的选择,但一般情况下需要复杂度很高的非线性均衡器(例如最优似然ML均衡器)才能够获得理想的增益效果。我们提出多频带复用的多协作通信办法,可以在使用复杂度相对低的线性均衡器的条件下,也可以获得非线性均衡器条件下获得的增益效果,并进行系统仿真验证。此外,还以基于信号达到时间差(TODA)和基于信号强度(RSS),针对水下环境进行了协同定位的探索。此外,还结合多天线系统研究了通信系统的安全性分析,针对物理层安全技术研究中的关键和难点问题,优化了算法性能并仿真验证。课题研究成果在国内外重要学术期刊和会议上发表学术论文9篇,其中SCI 检索3篇,EI 检索4篇,2篇在审稿阶段。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
低轨卫星通信信道分配策略
基于结构滤波器的伺服系统谐振抑制
极区电离层对流速度的浅层神经网络建模与分析
楼梯疏散三维建模的改进社会力模型
面向高带宽应用的高速串行接口电路关键技术研究
面向高速并行水下无线光通信的micro-LED阵列器件的高调制带宽机理研究
采用单载波迭代频域均衡的高速MIMO水声通信研究
广域网面向预留带宽的大数据高速传输协议研究