Building micro- and nano-scale electronic devices is the inevitable trend of device miniaturization. As a salient example, germanium (Ge) nanostructure is particularly interesting for future nanotechnology not just because of its similar structural and electronic properties to those of silicon (e.g., diamond-like structures with tetrahedrally coordinated sp3 hybridized toms), but also for many superior properties over silicon in device applications (e.g., higher intrinsic carrier mobility, larger exciton Bohr radius, greater lithium-ion diffusivity, higher absorption coefficient at near-infrared frequencies). Especially Ge nanotubes (GeNTs), their high specific surface areas together with the superior intrinsic properties of Ge itself makes them promising materials for high-performance nanodevices (e.g., optical electronics, lithium-ion battery, near-infrared photodetector). Furthermore, theoretical studies predicted that Mn-doped GeNTs were theoretically investigated to be metallic and have interesting magnetic properties, making them promising as nanomagnets and nanosensors. However, unlike carbon, Ge prefers sp3 hybridization and favors the tetrahedral diamond-like structures, thereby forming the commonly observed solid Ge nanowires rather than hollow GeNTs. Herein, we firstly tried to develop a facile approach to controllably fabricate well-aligned GeNT arrays inside the nanochannels of porous anodic aluminum oxide (AAO) templates, via pre-decorated metal salt catalyst precursors inside the inner pore walls of porous AAO templates and subsequent low temperature chemical vapor deposition of Ge. Subsequently, we would study the properties of as-grown GeNTs under different growth conditions, as well as the effect of transition metal doping on their structural and properties of as-grown GeNTs. We believe that the ability to prepare well-aligned GeNT arrays with open ends and tailored structures would facilitates the investigation of structure and transition metal doping dependent properties, and provides new opportunity to harness the versatile nanostructures not only for fundamental studies but also for optimizing Ge-based performance in nanodevices and nanosystems.
构筑微纳尺度的电子器件是设备微型化发展的必然趋势。锗(Ge)作为一种重要的半导体材料,由于其较高的载流子迁移率、较大的波尔半径、较高的锂离子扩散系数等,使得Ge纳米管(GeNTs)在高性能的光电、锂电、近红外探测等领域有潜在应用。此外,理论研究表明锰掺杂的GeNTs具有磁性,在纳米磁存储及传感领域有重要应用。然而与碳相比,Ge原子更倾向于形成sp3杂化,因此实验中获得的一般是Ge纳米线而非GeNTs。本项目拟以多孔氧化铝为模板,通过溶液浸泡(修饰催化剂前驱体)和化学气相沉积(制备Ge)相结合的方法,旨在氧化铝模板纳米通道内制备出两端开口的GeNT阵列。在此基础上,系统研究不同条件制备GeNTs的光、电特性以及过渡金属掺杂对其结构、性能的影响。该项目将为研究GeNTs的制备工艺,揭示过渡金属掺杂对其结构、性能的影响以及优化Ge基纳米结构性能提供实验基础,对锗基纳米结构器件化有一定的推动作用。
构筑微纳尺度的电子器件是设备微型化发展的必然趋势。锗(Ge)作为一种重要的半导体材料,由于其较高的载流子迁移率、较大的波尔半径、较高的锂离子扩散系数等,使得Ge纳米管(GeNTs)在高性能的光电、锂电、近红外探测等领域有潜在应用。本项目:(1)以多孔氧化铝为模板,通过溶液浸泡(修饰催化剂前驱体)和化学气相沉积(制备Ge)相结合的方法,在氧化铝模板纳米通道内制备出两端开口的GeNT阵列。在此基础上,系统研究不同条件制备GeNTs的光、电特性以及过渡金属掺杂对其结构、性能的影响。(2)制备了多种Ge基异质结构,并通过在其表面修饰高密度的银(Ag)纳米颗粒,获得了具有高活性和信号可重复性好的SERS衬底,实现了对PCBs的快速响应。该项目将为研究GeNTs的制备工艺,揭示过渡金属掺杂对其结构、性能的影响以及优化Ge基纳米结构性能提供实验基础,对锗基纳米结构器件化有一定的推动作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
外泌体在胃癌转移中作用机制的研究进展
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
早孕期颈项透明层增厚胎儿染色体异常的临床研究
氮掺杂碳纳米管负载过渡金属的构筑及加氢性能研究
氮硫共掺杂多孔碳负载过渡金属硫化物的可控构筑及氧还原催化性能研究
3d过渡金属与贵金属共掺杂CeO2高活性晶面的可控构筑及其催化性能研究
过渡金属掺杂管状rGO载Pd复合结构的可控合成及催化性能研究