Sirt3 is a specific deacetylase located mainly in mitochondria, directly interacts with mitochondrial proteins and regulates their acetylation modification levels. Its activity is deeply involved with cell metabolism, survival, longevity and cancer related diseases, but its regulated proteins and interaction mechanism is seldom studied, especially in the neuronal death related diseases by mitochondrial dysfunction, while the DAergic Neuronal Death is the most important and specific pathological characteristics of neurodegenerative diseases such as in Parkinson Disease and Alzheimer’s Disease. Based on our proteomics technology platform through the peptide high confident sequencing and high throughput protein identification technologies, we firstly found Sirt3 could be glycosylated and located in different subcellular organs. Further, we preliminarily found that Sirt3 could directly interact with and deacetylate SOD2 and ATP synthase β, which strongly affect cell ATP and ROS levels, protect against dopaminergic neuronal death from mitochondrial dysfunction. We will further identify the Sirt3 interacted proteins, reveal their combinational modifications and the signal transduction pathways, as well as their functions and the mechanisms in regulating neuronal cell death in animal models and clinic samples. Finally, we will supply the new targets and data for the treatment of neurodegenerative diseases.
Sirt3主要定位于线粒体,通过调控相关蛋白的乙酰化修饰参与细胞能量代谢,与细胞生存及癌症等重大疾病的发生发展密切相关,但其直接调控蛋白及其作用机制尚不清楚,特别是在线粒体损伤诱导的神经细胞死亡中研究报道较少,而多巴胺能神经元死亡是帕金森和老年痴呆等神经系统疾病最主要的病理特征。基于多肽高可信度测序和蛋白组学高通量鉴定技术平台,我们首次发现Sirt3存在糖基化修饰并在不同亚细胞器中均有分布,可与ATP Synthase β和SOD2直接相互作用并调控其乙酰化修饰水平,进而严重影响细胞内ATP和ROS水平,抑制神经元死亡。本研究拟利用细胞和动物模型深入研究Sirt3相互作用蛋白质,Sirt3组合修饰及其调控的下游信号通路,利用生化与分子生物学技术通过对关键蛋白进行抑制或激活,并在动物模型中探索关键蛋白的功能,阐明Sirt3调控神经细胞死亡机制,为神经系统退行性疾病的诊治提供新的靶标和依据。
帕金森病(Parkinson’s disease,PD)是严重威胁人类健康的神经退行性疾病,其发病率和死亡率呈上升趋势,发病机制尚不明确,目前仍缺乏有效的治疗手段。线粒体损伤诱导的ROS水平升高和ATP水平降低是造成多巴胺能神经元死亡的重要原因,但其深入机制仍不清楚。去乙酰化酶Sirt3主要定位于线粒体,其通过调控相关蛋白的乙酰化修饰参与细胞能量代谢,Sirt3通过去乙酰化线粒体中关键代谢酶参与调控线粒体功能稳态,但是其对多巴胺能神经元死亡的调控机制仍不清楚。本项目通过建立MPTP/MPP+诱导的多巴胺能神经元死亡体内外细胞和小鼠模型,利用质谱、生化、分子、细胞和脑内显微注射等技术,在细胞和动物水平上系统研究并揭示了Sirt3对多巴胺能神经元的保护作用机制,首次揭示了PGC-1α/ERRα-Sirt3-SOD2/ATP synthase β信号通路在PD多巴胺能神经元死亡中的调控机制,为揭示PD的发病机理和寻找新的药物靶点提供重要的科学依据。项目取得的成果如下:.1)本课题首次发现去乙酰化酶Sirt3在MPTP/MPP+诱导的多巴胺能神经元死亡模型中表达下调,其过表达可改善线粒体功能紊乱,显著缓解MPP+处理导致的N-2a细胞和小鼠中脑原代神经元构建神经元死亡,并通过小鼠体内实验证明Sirt3在多巴胺能神经元死亡过程中具有重要的保护作用。.2)本课题利用CoIP结合LC-MS/MS质谱的相互作用蛋白质组学手段,构建了Sirt3介导的相互作用蛋白网络,进而证明Sirt3与SOD2和ATP synthase β具有内源性相互作用。.3)本课题首次发现Sirt3可通过去乙酰化SOD2-K130位点和ATP synthase β-K485位点来调控神经细胞线粒体中的活性氧自由基ROS和ATP的水平。.4)本课题首次发现Sirt3的上游转录调控因子PGC-1α,PGC-1α可结合在Sirt3的启动子区调控Sirt3表达,是MPP+诱导神经元死亡过程中Sirt3下调的重要上游转录调控因子。.项目按计划执行,完成了原计划任务目标。项目执行期间共在国际学术期刊上发表研究论文1篇(SCI收录,标注基金资助号),获得国家发明专利授权1项,申请国家发明专利3项,培养博士研究生3名,硕士研究生3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
阿特拉津致多巴胺分泌减少及多巴胺能神经元死亡机制研究
线粒体伴侣蛋白mortalin在多巴胺能神经元选择性死亡中的作用机制研究
Egr-1在帕金森病多巴胺能神经元死亡中的作用及其机制研究
Cathepsin L激活在多巴胺能神经元死亡中的作用