Antibiotics are considered as emerging contaminants with great potential risks to water ecological system and human health. Such substances, featured by their high toxicity, component complexity and degradation difficulty, are normally discharged into aquatic environment in their intact and/or metabolic forms during the process of production and usage. Inspired by our earlier work regarding effective wastewater treatment by means of photocatalysis and microbial fuel cell (MFC), this proposal aims at conducting a systematic and innovative study on the efficient degradation of typical antibiotic (containing sulfamethoxazole, sulfanilamide oxygen pyrimidine, penicillin, tetracycline and metronidazole) wastewater with the aid of our state-of-the-art photocatalytic MFC. Such MFC, constructed by using 3D graphene aerogels as the modified electrodes, would realize the effective utilization of two renewable clean energy and in turn, enhance the electricity generation and antibiotic removal efficiency. In addition, detailed study on the improvement effect and mechanism of this system is carried out. This proposal mainly encompasses the following sections: Controllable preparation of 3D graphene aerogels for electrode materials with high conductivity, good biocompatibility and large porosity; Fabrication of high-performance semiconductor/3D graphene composite photocatalysts; Construction of photocatalytic MFC for the treatment of antibiotic wastewater; Investigation of mechanisms for the enhanced degradation of typical antibiotics. This project centers on the experimental and theoretical exploration of the enhancement effect as well as the mechanism of our innovative route, offering fundamental understanding towards the practical treatment of antibiotic wastewater.
抗生素在生产和使用过程中大部分以原药或代谢产物的形式排入水环境,具有生物毒性大、成分复杂和难降解等特点,是一类对生态系统和人类健康潜在危害较大的新兴有机污染物。本项目以申请人近年来在光催化和微生物燃料电池(MFC)处理废水方面的研究工作为基础,拟采用整块3D石墨烯气凝胶修饰MFC电极,系统开展利用光催化与MFC组合的光催化型MFC降解典型抗生素类(磺胺甲恶唑、磺胺间甲氧嘧啶、青霉素、四环素和甲硝唑)医药废水的创新研究,以实现太阳能和MFC两大清洁能源的结合,有效提高MFC产电和对抗生素的去除率。主要研究内容:高导电性、高生物相容性和高孔隙率3D石墨烯气凝胶电极宏观材料的可控制备;高活性半导体/3D石墨烯光催化剂的制备;用于抗生素废水处理的光催化型MFC的构建;典型抗生素降解的强化效应与机制。本项目以实验探索为主,结合理论分析,揭示新方法的强化效应与机制,为抗生素废水的实际处理提供理论依据。
针对MFC产电效率低和造价高的瓶颈问题,基于石墨烯气凝胶优异的物理化学特性,以及良好的催化剂载体和机械性能,本课题通过将整块的石墨烯基气凝胶用作光催化型MFC的电极材料,从而显著提高光催化型MFC的产电性能和去除难降解污染物的性能。以石墨烯气凝胶为基底,将高活性的BiOCl与之复合获得宏观整体的BiOCl/RGO气凝胶(BGA),结合光催化性能和生物相容性评价,探究其作为光催化型MFC电极材料的可能性。通过比较添加(O-MFC)和未添加土霉素(C-MFC)时双室MFC的产电性能和生物学参数的动态差异,从基因水平解释了OTC的耐药机制。在此基础上,以商品碳刷(CB)为生物阳极,BGA电极为光阴极构建双室光催化型MFC,分别以四环素类抗生素土霉素(OTC)和偶氮染料甲基橙(MO)为阳极和阴极目标污染物,在开路、闭合电路、光照、黑暗等不同运行条件下,比较了不同体系产电性能、污染物降解效率和生物群落结构差异,探讨了光催化型MFC协同产电和污染物降解的强化效应。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
气载放射性碘采样测量方法研究进展
基于FTA-BN模型的页岩气井口装置失效概率分析
基于碳复合气体扩散电极的电催化高级氧化技术降解典型抗生素生产废水的机理研究
微生物原位制作石墨烯修饰电极提升MFC产电的性能与机制
可见光响应固态石墨烯基复合光催化体系对水体中抗生素类物质的降解研究
非金属原子掺杂石墨烯活化过硫酸盐降解磺胺抗生素废水的过程与机制