Due to their unique structure of atoms random packing, Fe-based metallic glasses exhibit much better efficiency than that of crystalline zero-valent metals in degradation of organic dyes, and then possess great potentials in application for purifying the industrial wastewater. However, there are many fundamental issues are not well understood, such as the main factors affecting the reaction activity and the degrading efficiency of the Fe-based metallic glasses and the methods for enhancing their efficiency and stability in degradation are not clear. Then, for better application of Fe-base metallic glasses as zero-valent metals in degradation of organic dyes it is necessary to do more detail research works. In present program, detail experiments of degradation of oze-dye containing wastewater will be carried out with the zero-valent Fe-based metallic glasses, including the commercial Fe-based glassy ribbons. The influence of the composition, the local inhomogeneous structures and the morphology on the reactive activity and the efficiency of the Fe-based metallic glasses in oze-dye degradation and the related mechanism will be understood. And the correlation of composition, the local inhomogeneous structures and the morphology with the degradation property will be esdablished. The relationships of the degrading efficiency with the addition of the metallic glasses, the concentration of the oze-dye in wastewater, the reactive temperature, and pH value of the wastewater will be revealed. The effects of surface modification and heat treatment of the Fe-based glassy ribbons on the degradation efficiency will be studied and understood. The methods for enhancing the reactive activity and the degrading efficiency of the glassy alloys in degradation process of oze-dye containing wastewater will be explored, and then the related technology will be developed. The obtained results in present program will provide scientific knowledge and technological supports for high efficient degradation and purification of oze-dye containing wastewater with F-based glassy alloys, especially the low cost processing surplus of the commercial Fe-based glassy ribbon. It shows that the proposed research work is not only significant for developing glassy theory but also valuable for application in wastewater purification.
因具有原子呈长程无序排列的结构特征,铁基非晶合金具有远优于晶态零价铁的有机染料降解效率,使其具有很好的应用前景。但影响铁基非晶合金反应活性和降解效率的主要因素和进一步提升其降解效率和性能稳定性的途径仍不十分清楚。因此,有必要开展深入研究。本项目拟采用铁基非晶合金、包括其工业带材作为零价金属来降解含偶氮染料污水,通过实验研究,揭示合金成分、带材状态、局域微结构对铁基非晶合金降解效率的影响规律和影响机制,建立铁基非晶合金成分、局域结构和组织结构与降解性能间的关联,认识非晶合金添加量、偶氮染料浓度、反应温度和pH值等因素对铁基非晶合金降解效率的影响规律,探索表面处理、热处理等工艺技术对非晶合金降解效率的影响规律和提高铁基非晶合金带材降解效率和活性恢复的技术途径,为铁基非晶合金带材、特别是工业带材加工余料应用于含偶氮染料污水的降解净化提供科学依据和技术支持。研究工作具有重要理论意义和实用价值。
工业废水、特别是含偶氮染料污水对环境保护和可持续发展有重要影响。与常用的降解净化处理材料零价金属相比,非晶合金因其特有的结构特征,具有更高的降解效率。因此研究影响非晶合金(包括零价金属)对偶氮染料污水降解性能的主要因素,探索提升降解效率的方法不仅具有重要的学术价值,还有重要实用价值。本项目通过实验研究和深入分析,发现添加合金元素对铁基非晶合金降解性能存在显著影响,在降解性能很差的Fe73.5Si13.5B9Nb3Cu1非晶合金(工业牌号1K107,难以将初始浓度降低至50%以下)中添加8.5 at% Ni时,可大幅提升该非晶合金的降解效率,可在50分钟中内将偶氮染料浓度减低至95%以下。添加少量Cu元素可促进铁基非晶合金形成纳米尺度成分/结构不均匀性,并可显著提升其降解效率和降解活性稳定性。具有纳米尺度非均匀局域结构和自更新活化能力的Fe81Si4B14Cu1非晶合金具可在保持高降解效率的条件下至少循环使用45次。这为设计高降解活性零价铁材料提供了一种新思路。研究发现对工业化生产的铁基非晶合金带材、包括退火处理后的非晶合金带材进行轧制处理,可显著提升其对偶氮染料污水的降解效率。应力诱导的降解性能活化效果明显。这为铁基非晶合金工业废料在污水降解净化领域应用提供了新的提升降解性能的方法。实验结果表明,设计和制备的多孔镍/非晶粉末复合结构具有优异的偶氮染料污水降解性能和降解活性稳定性,这种复合结构可在重复循环使用100次时仍保持高的降解效率,其重复使用次数和效率远高于已报道的结果。发明的这种复合结构具有很好的应用前景。发现将多孔铁镍泡沫材料与金属铁粉制备成的复合结构也具有很好的偶氮染料污水降解性能和高的重复循环降解性能,且粉末表明粗糙度增加有利于提升降解性能。还发现降低偶氮染料污水中的氧含量,有利于提升碱性溶液中的降解效率。本项目研究成果对提升偶氮染料污水降解效率、促进偶氮染料污水低成本高效净化处理和环境保护具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
低轨卫星通信信道分配策略
Wnt 信号通路在非小细胞肺癌中的研究进展
基于LBS的移动定向优惠券策略
混采地震数据高效高精度分离处理方法研究进展
铜基非晶合金降解染料废水的机理研究
生物降解镁基非晶合金设计、制备及其降解行为
高饱和磁感强度铁基非晶合金的性能特征与影响机制研究
铁基非晶合金的取向纳米晶化及其力学与磁性能研究