Apolipoprotein (apo) A-I plays an important role in the pathogenesis of atherosclerosis. However,whether apoA-I was nonenzymatic glycated in patients with hyperglycemia and whether apoA-I glycation was related to coronary artery disease (CAD) are still not clear. Because glycations are not the direct production of genes and their structures are diversity, it is hard to systematically analyze and study their structures and biological functions through traditional analytical methods. To know more about glycated apoA-I, the study of glycated apoA1 by a combination of terahertz scanning near field microscopy (THz-SNOM) and paper-based microfluidic is came up. Firstly, we investigate the terahertz spectrum of native apoA-I, in-vitro glycated apoA-I, in-vivo glycated apoA-I and typical glycation products. On the basis of their obvious and unique absorption spectrum in THz region, we can distinguish apoA-I with different glycated types from each other. By using chemometrics methods and molecular simulations, we can deduce the proportion and type of each glycated apoA-I products exactly. Based on these results, we finally study the correlation between the glycated apoA-I structure and the vessel lumen diameter as well as the area of atherosclerotic plaque in patients with CAD. These results have important significance for the early diagnosis and treatment of CAD.
抑制动脉粥样硬化的关键因子apoA1,在高血糖条件下易发生糖基化,导致分子结构与生理功能变化。目前糖基化对apoA1分子结构及抗动脉硬化功能的影响规律尚未探明,原因在于常规分析手段有耗时昂贵的缺点。为实现病患糖基化apoA1的长期控制,急需开发出新的糖基化apoA1检测方法。本项目将基于THz近场扫描与纸基微流控技术,解决传统THz对微量蛋白质水溶液检测灵敏度不足问题;同时结合分子模拟、化学计量,将apoA1的THz谱图特征信息、糖化种类、糖化水平三者建立关联,以实现对人体中微量糖基化apoA1的检测,明确糖基化对apoA1分子结构影响机理,进而构建起可同时分析apoA1糖化种类与糖化水平的研究方法;通过建立糖基化apoA1的THz数据库,探索临床病例中糖基化apoA1与动脉粥样硬化程度的相关性,最终从分子基团根源角度明确apoA1糖基化与其生理功能间的关联。对冠心病基础研究具有重要意义。
本项目以建立基于太赫兹波谱技术的动脉硬化关键生物标志物定性识别和定量分析检测方法为主线,结合微加工技术和生物传感技术,采用微纳超结构对多项动脉硬化相关生物标志物和药物进行检测分析,探索并建立了一系列快速、高灵敏度的检测方法,为早期动脉粥样硬化筛查提供新的技术手段,并拓展了太赫兹波谱技术的医学应用范围。本项目主要研究内容有:(1)针对太赫兹特征不明显的目标物质,创新性提出通过可控化学反应转化为太赫兹特征明显的新目标物质,并将该方法用于动脉硬化关键生物标志物甲基乙二醛的定量检测,检测时间约1分钟/次,最低检测限约2 µmol/mL。(2)针对血液中丰度低的目标物质,利用太赫兹微纳传感芯片提高检测灵敏度,该方法用于动脉硬化关键生物标志物糖化apoA1的定性识别和多种小分子标志物的定量检测。(3)针对动脉粥样硬化治疗药物代谢追踪,将基于密度泛函理论的分子模拟分析与太赫兹波谱技术相结合,提高太赫兹检测的特异性识别准确性和定量灵敏度。在项目执行期间,已发表高水平学术论文4篇,其中SCI收录2篇,EI收录1篇;申请发明专利1项;参加国内外学术会议4次,其中邀请口头报告2次;培养了毕业硕士研究生2人,出站博士后1人(获得上海市首届“超级博士后”称号),带领本科生团队获第十七届“挑战杯”上海市大学生课外学术科技作品竞赛特等奖。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于微流控系统的太赫兹频段数字超材料
基于微流控系统太赫兹超材料传感器对水体中重金属离子检测研究
基于太赫兹光谱近场成像技术的应力场测量方法
微流控多功能检测芯片