The energy saving of pneumatic system is always a cutting-edge research topic accompanying pneumatic technology. Currently, most studies on this topic are conducted from the perspectives of either component level or system level, while the significant effects of interactions between components on system performance have been neglected. In this study, the compressed air tank is taken as the research object. It is pointed out that the traditional isochoric air tank consumes no energy but contributes to significant energy dissipation of other components in the pneumatic systems. For achieving better energy saving performance, a novel isobaric air tank is proposed to replace the traditional isochoric air tank. Besides, the mechanism of energy saving is explored. First of all, the isobaric air tank is designed by integrating energy storage technologies, thereby achieving isobaric storage of compressed air. Secondly, the static and dynamic characteristics of isobaric air tank in the charging, discharging, and storage processes are investigated by experiments, thereby optimizing parameters. And then, the energy-saving performance of isobaric air tank is quantified by experiments. After that, the advanced exergy theory is proposed to reveal the mechanism of the effects of interactions between components on energy-saving performance of system. Finally, the feasibility of combining advanced exergy theory with pneumatic energy-saving research is verified by experiments. The round-trip energy efficiency of whole pneumatic system could be increased by 5%~12% by introducing the isobaric air tank in pneumatic systems. The energy storage density of isobaric air tank is 2~4 times of that of traditional isochoric air tank. Besides, the isobaric air tank could also solve the bottleneck problem of achieving constant pressure and variable flow control of pneumatic systems. The advanced exergy theory provides a new way for energy-saving theory research of pneumatic systems.
气动节能是伴随着气动技术永恒的研究课题,当前气动节能研究主要是从元件和系统的角度开展的,而忽视了系统元件之间的相互作用效应对气动节能的重要性。本课题以储气罐为研究对象,指出传统定容式储气罐本身不耗能但却增加了系统其它元件能耗的问题,提出以新型恒压式储气装置取代传统定容式储气罐实现节能的新方法并对其节能机理开展深入研究。首先,通过集成储能技术设计恒压式储气装置,实现压缩空气恒压存储;其次,对恒压式储气装置充放气及储气过程的动静态特性进行实验研究,优化设计参数;进而通过实验量化其节能效果;然后,应用高等㶲理论揭示这种气动元件间的相互作用效应对系统能效的影响机理;最后,通过实验验证高等㶲理论应用于气动节能研究的正确性。本课题提出的恒压式储气装置能将气动系统总效率提升5%~12%,储能密度是传统储气罐的2~4倍,能解决当前气动系统恒压变量控制的瓶颈难题;高等㶲理论也为气动节能理论研究提供了新思路。
压缩空气系统应用广泛,但其能量效率远低于电气和液压系统,在绿色制造和“双碳”需求牵引下,精确的压缩空气能量量化评估和精细化的气动节能研究有着愈发重要的意义。本项目主要提出对气动系统恒压储气的节能机理开展研究,并进行气动节能理论和气动应用拓展。项目取得的主要进展如下:(1)设计了基于储能原理实现压缩气体恒压存储的储气装置,开展了装置动静态特性研究,验证了恒压储气结构的可行性,通过对超调现象进行设计优化将压力稳定性提高了15%,并提出了进一步优化的技术路径;(2)对恒压储气的节能机理进行了深入分析,揭示了系统中元件间的强相互作用现象,对项目实验系统而言,末端执行器前端系统效率从46%提高到53%,排气浪费了大量能量,充分利用压缩空气膨胀能能够大大提高能量效率,并进行了实验验证;(3)建立了气动系统能量分析的㶲分析框架,在AMESim软件中进行二次开发,设计了㶲分析工具箱,并提出了基于㶲场理论对气动元件进行能耗分析的思路,对气动元件的精细化节能研究提供了新的方法;(4)针对气动系统中存在的强非线性和强耦合作用,基于㶲理论,融合机器学习,提出了在气动系统中以低冗余传感网络进行故障诊断的思路,初步证明了其可行性,验证了㶲对比压力和流量指标的优越性和稳定性,为后续复杂气动系统低成本智能化能量-健康-质量融合管理奠定了基础;(5)将气动恒压储气概念的应用进行了拓展和研究,利用深水静压实现规模化压缩气体储能,设计了通用型的水下恒压式流体存储装置,并进行了流体动力学分析。基于以上研究成果,本项目已发表学术论文10篇,其中SCI收录期刊论文5篇,EI收录期刊论文1篇,其他论文4篇,获授权国家发明专利4件,参加学术会议3人次,培养研究生4名(毕业1人,在读3人),培养优秀本科生3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于管壳式结构的相变储能系统传热特性与储能机理研究
可控流体静压储能传动的节能机理及其应用
多能源储能系统构建理论、控制和设计方法
基于超导限流储能和电池储能的综合能量管理系统在风力发电中的基础问题研究